Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 31(38): 50746-50766, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39103579

RESUMO

Dakhla Bay, situated on the African Atlantic coast, has witnessed sporadic harmful algal blooms (HABs) caused by toxic dinoflagellate species over the past two decades. In this study, we investigated the distribution, abundance, and diversity of dinoflagellate cysts, with a focus on potentially toxic species that develop in this ecosystem where such data are lacking. Sediment samples were collected in April 2018 through coring at 49 stations distributed across the bay. The highest abundance of dinoflagellate cysts was recorded at 304 cysts/g dry sediment, observed at the inner part of the bay, indicating that this area is the preferential zone for cyst accumulation. Pearson's tests revealed significant positive correlations (P < 0.05) between cyst abundance and the water content, organic matter, and fine fraction (< 63 µm) of the sediment. Cyst morphotypes of potentially toxic dinoflagellate species known to produce saxitoxins, such as Alexandrium minutum, Alexandrium tamarense species complex, Gymnodinium catenatum, and yessotoxins, such as Lingulodinium polyedrum and Gonyaulax cf. spinifera, were identified in the sediment of Dakhla Bay. These findings were further supported by our long-term monitoring period (2005-2018), underscoring the presence of these HAB species in Dakhla Bay. During our survey, sporadic mollusk intoxication events were recorded at station PK25 for the grooved razor shell Solen marginatus and at station Boutelha for the oyster Crassostrea gigas. Paralytic shellfish toxin concentrations exceeded the sanitary threshold (80 µg STX di-HCl eq/100 g of shellfish meat) only twice, in December 2006 and January 2007 at station PK25. Contamination by amnesic shellfish toxins occurred sporadically but never reached the sanitary threshold of 20 µg/g of shellfish meat. Lipophilic shellfish intoxication occurred multiple times in the two investigated areas. These observations suggest that the cysts of the identified HAB species germinated and inoculated the water column, resulting in the observed intoxication events. Relatively low levels of intoxication could be attributed to the moderate abundances of cysts, which may reduce the seeding capacity. This could be explained by the significant interaction of Dakhla Bay with the Atlantic Ocean, characterized by hydrological dynamics that impede the deposition and accumulation of cysts in the bay's sediments. This study reaffirms the importance of investigating dinoflagellate cysts in assessing the diversity of HAB species and evaluating associated sanitary risks.


Assuntos
Baías , Dinoflagellida , Sedimentos Geológicos , Proliferação Nociva de Algas , Animais , Sedimentos Geológicos/química , Monitoramento Ambiental , Moluscos , Toxinas Marinhas
2.
Toxicon ; 46(6): 612-8, 2005 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16168451

RESUMO

At the western Mediterranean coast of Morocco, the cockle (Acanthocardia tuberculatum) contained persistent high levels of paralytic shellfish toxins for several years, while other bivalve molluscs such as sweet clam (Callista chione) from the same vicinity were contaminated seasonally to a much lesser extent. In order to understand the causes of this prolonged contamination, a comparative study on PSP decontamination between sweet clam and cockle was conducted from November 2001 until June 2002. PSP toxicity was analysed by automated pre-column oxidation (Prechromatographic oxidation and LC-FD) in several organs of both species, namely digestive gland, foot, gill, mantle, muscle and siphon for sweet clams. The results showed that cockle sequester PSP toxins preferably in non-visceral organs (Foot, gill and mantle) contrary to sweet clam that sequester them in visceral tissues (digestive gland). The toxin profile of cockle organs indicated dominance of dcSTX, whereas sweet clam tissues contained especially C-toxins. Substantial differences in toxin profile between cockle and sweet clam, from the same area as well as from the composition of PSP toxin producer, Gymnodinium catenatum, confirm the bioconversion of PSP toxins in cockle.


Assuntos
Bivalves/metabolismo , Bivalves/microbiologia , Dinoflagellida/química , Saxitoxina/farmacocinética , Animais , Carga Corporal (Radioterapia) , Cromatografia Líquida de Alta Pressão , Marrocos , Saxitoxina/metabolismo , Estações do Ano , Especificidade da Espécie , Distribuição Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA