Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neuropharmacology ; 237: 109602, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37290534

RESUMO

Cannabidiol (CBD) has been recently approved as an antiseizure agent in Dravet Syndrome (DS), a pediatric epileptic encephalopathy, but CBD could also be active against associated comorbidities. Such associated comorbidities were also attenuated by the sesquiterpene ß-caryophyllene (BCP). Here, we have compared the efficacy of both compounds and further initiated the analysis of a possible additive effect between both compounds in relation with these comorbidities using two experimental approaches. The first experiment was aimed at comparing the benefits of CBD and BCP, including their combination in conditional knock-in Scn1a-A1783V mice, an experimental model of DS, treated since the postnatal day 10th to 24th. As expected, DS mice showed impairment in limb clasping, delay in the appearance of hindlimb grasp reflex and additional behavioural disturbances (e.g., hyperactivity, cognitive deterioration, social interaction deficits). This behavioural impairment was associated with marked astroglial and microglial reactivities in the prefrontal cortex and the hippocampal dentate gyrus. BCP and CBD administered alone were both able to partially attenuate the behavioural disturbances and the glial reactivities, with apparently greater efficacy against glial reactivities obtained with BCP, whereas superior effects in a few specific parameters were obtained when both compounds were combined. In the second experiment, we investigated this additive effect in cultured BV2 cells treated with BCP and/or CBD and stimulated with LPS. As expected, addition of LPS induced a marked increase in several inflammation-related markers (e.g., TLR4, COX-2, iNOS, catalase, TNF-α, IL-1ß), as well as elevated Iba-1 immunostaining. Treatment with BCP or CBD attenuated these elevations, but, again and in general, superior results were obtained when both cannabinoids were combined. In conclusion, our results support the interest to continue investigating the combination of BCP and CBD to improve the therapeutic management of DS in relation with their disease-modifying properties.


Assuntos
Canabidiol , Epilepsias Mioclônicas , Camundongos , Animais , Canabidiol/farmacologia , Canabidiol/uso terapêutico , Lipopolissacarídeos , Epilepsias Mioclônicas/tratamento farmacológico , Canal de Sódio Disparado por Voltagem NAV1.1
2.
Int J Mol Sci ; 24(3)2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36769051

RESUMO

Dravet syndrome (DS) is an epileptic encephalopathy caused by mutations in the Scn1a gene encoding the α1 subunit of the Nav1.1 sodium channel, which is associated with recurrent and generalized seizures, even leading to death. In experimental models of DS, histological alterations have been found in the brain; however, the retina is a projection of the brain and there are no studies that analyze the possible histological changes that may occur in the disease. This study analyzes the retinal histological changes in glial cells (microglia and astrocytes), retinal ganglion cells (RGCs) and GABAergic amacrine cells in an experimental model of DS (Syn-Cre/Scn1aWT/A1783V) compared to a control group at postnatal day (PND) 25. Retinal whole-mounts were labeled with anti-GFAP, anti-Iba-1, anti-Brn3a and anti-GAD65/67. Signs of microglial and astroglial activation, and the number of Brn3a+ and GAD65+67+ cells were quantified. We found retinal activation of astroglial and microglial cells but not death of RGCs and GABAergic amacrine cells. These changes are similar to those found at the level of the hippocampus in the same experimental model in PND25, indicating a relationship between brain and retinal changes in DS. This suggests that the retina could serve as a possible biomarker in DS.


Assuntos
Epilepsias Mioclônicas , Canal de Sódio Disparado por Voltagem NAV1.1 , Camundongos , Animais , Canal de Sódio Disparado por Voltagem NAV1.1/genética , Epilepsias Mioclônicas/genética , Epilepsias Mioclônicas/patologia , Retina/patologia , Convulsões/genética , Microglia/patologia , Modelos Animais de Doenças
4.
Neuropharmacology ; 205: 108914, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-34875285

RESUMO

Dravet Syndrome (DS) is caused by mutations in the Scn1a gene encoding the α1 subunit of the sodium channel Nav1.1, which results in febrile seizures that progress to severe tonic-clonic seizures and associated comorbidities. Treatment with cannabidiol has been approved for the management of seizures in DS patients, but it appears to be also active against associated comorbidities. In this new study, we have investigated ß-caryophyllene (BCP), a cannabinoid with terpene structure that appears to also have a broad-spectrum profile, as a useful therapy against both seizuring activity and progression of associated comorbidities. This has been studied in heterozygous conditional knock-in mice carrying a missense mutation (A1783V) in Scn1a gene expressed exclusively in neurons of the Central Nervous System (Syn-Cre/Scn1aWT/A1783V), using two experimental approaches. In the first approach, an acute treatment with BCP was effective against seizuring activity induced by pentylenetetrazole (PTZ) in wildtype (Scn1aWT/WT) and also in Syn-Cre/Scn1aWT/A1783V mice, with these last animals having a greater susceptibility to PTZ. Such benefits were paralleled by a BCP-induced reduction in PTZ-induced reactive astrogliosis (labelled with GFAP) and microgliosis (labelled with Iba-1) in the prefrontal cortex and the hippocampal dentate gyrus, which were visible in both wildtype (Scn1aWT/WT) and Syn-Cre/Scn1aWT/A1783V mice. In the second approach, both genotypes were treated repeatedly with BCP to investigate its effects on several DS comorbidities. Thus, BCP corrected important behavioural abnormalities of Syn-Cre/Scn1aWT/A1783V mice (e.g. delayed appearance of hindlimb grasp reflex, induction of clasping response, motor hyperactivity, altered social interaction and memory impairment), attenuated weight loss, and slightly delayed premature mortality. Again, these benefits were paralleled by a BCP-induced reduction in reactive astrogliosis and microgliosis in the prefrontal cortex and the hippocampal dentate gyrus typical of Syn-Cre/Scn1aWT/A1783V mice. In conclusion, BCP was active in Syn-Cre/Scn1aWT/A1783V mice against seizuring activity (acute treatment) and against several comorbidities (repeated treatment), in both cases in association with its capability to reduce glial reactivity in areas related to these behavioural abnormalities. This situates BCP in a promising position for further preclinical evaluation towards a close translation to DS patients.


Assuntos
Sintomas Comportamentais/tratamento farmacológico , Moduladores de Receptores de Canabinoides/farmacologia , Epilepsias Mioclônicas/tratamento farmacológico , Sesquiterpenos Policíclicos/farmacologia , Terpenos/farmacologia , Animais , Comportamento Animal/efeitos dos fármacos , Sintomas Comportamentais/etiologia , Modelos Animais de Doenças , Epilepsias Mioclônicas/complicações , Camundongos , Camundongos Transgênicos
5.
Eur Neuropsychopharmacol ; 36: 217-234, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32057592

RESUMO

Cannabis use induces a plethora of actions on the CNS via its active chemical ingredients, the so-called phytocannabinoids. These compounds have been frequently associated with the intoxicating properties of cannabis preparations. However, not all phytocannabinoids are psychotropic, and, irrespective of whether they are psychotropic or not, they have also shown numerous therapeutic properties. These properties are mostly associated with their ability to modulate the activity of an intercellular communication system, the so-called endocannabinoid system, which is highly active in the CNS and has been found altered in many neurological disorders. Specifically, this includes the neuropsychopharmacology field, with diseases such as schizophrenia and related psychoses, anxiety-related disorders, mood disorders, addiction, sleep disorders, post-traumatic stress disorder, anorexia nervosa and other feeding-related disorders, dementia, epileptic syndromes, as well as autism, fragile X syndrome and other neurodevelopment-related disorders. Here, we gather, from a pharmacological and biochemical standpoint, the recent advances in the study of the therapeutic relevance of the endocannabinoid system in the CNS, with especial emphasis on the neuropsychopharmacology field. We also illustrate the efforts that are currently being made to investigate at the clinical level the potential therapeutic benefits derived from elevating or inhibiting endocannabinoid signaling in animal models of neuropsychiatric disorders.


Assuntos
Canabinoides/uso terapêutico , Maconha Medicinal/uso terapêutico , Transtornos Mentais/tratamento farmacológico , Transtornos Mentais/psicologia , Animais , Cannabis , Dronabinol/uso terapêutico , Humanos , Transtornos Mentais/diagnóstico , Psicotrópicos/uso terapêutico
6.
Front Mol Neurosci ; 13: 602801, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33584198

RESUMO

Dravet syndrome (DS) is an epileptic syndrome caused by mutations in the Scn1a gene encoding the α1 subunit of the sodium channel Nav1.1, which is associated with febrile seizures that progress to severe tonic-clonic seizures and associated comorbidities. Treatment with cannabidiol has been approved to reduce seizures in DS, but it may also be active against these comorbidities. The aim of this study was to validate a new mouse model of DS having lower mortality than previous models, which may serve to further evaluate therapies for the long-term comorbidities. This new model consists of heterozygous conditional knock-in mice carrying a missense mutation (A1783V) in Scn1a gene expressed exclusively in neurons of the CNS (Syn-Cre/Scn1aWT/A1783V). These mice have been used here to determine the extent and persistence of the behavioral deterioration in different postnatal days (PND), as well as to investigate the alterations that the disease produces in the endocannabinoid system and the contribution of inflammatory events and impaired neurogenesis in the pathology. Syn-Cre/Scn1aWT/A1783V mice showed a strong reduction in hindlimb grasp reflex at PND10, whereas at PND25, they presented spontaneous convulsions and a greater susceptibility to pentylenetetrazole-induced seizures, marked hyperactivity, deficient spatial working memory, lower levels of anxiety, and altered social interaction behavior. These differences disappeared at PND40 and PND60, except the changes in social interaction and anxiety. The analysis of CNS structures associated with these behavioral alterations revealed an elevated glial reactivity in the prefrontal cortex and the dentate gyrus. This was associated in the dentate gyrus with a greater cell proliferation detected with Ki67 immunostaining, whereas double-labeling analyses identified that proliferating cells were GFAP-positive suggesting failed neurogenesis but astrocyte proliferation. The analysis of the endocannabinoid system of Syn-Cre/Scn1aWT/A1783V mice confirmed reductions in CB1 receptors and MAGL and FAAH enzymes, mainly in the cerebellum but also in other areas, whereas CB2 receptors became upregulated in the hippocampus. In conclusion, Syn-Cre/Scn1aWT/A1783V mice showed seizuring susceptibility and several comorbidities (hyperactivity, memory impairment, less anxiety, and altered social behavior), which exhibited a pattern of age expression similar to DS patients. Syn-Cre/Scn1aWT/A1783V mice also exhibited greater glial reactivity and a reactive response in the neurogenic niche, and regional changes in the status of the endocannabinoid signaling, events that could contribute in behavioral impairment.

7.
Biochem Pharmacol ; 157: 85-96, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30118663

RESUMO

The endocannabinoid system exerts a crucial neuromodulatory role in many brain areas that is essential for proper regulation of neuronal activity. The role of cannabinoid signalling controlling neuronal activity in the adult brain is also evident when considering its contribution to adult brain insults or neurodegenerative diseases. In the context of brain genetic or acquired encephalopathies administration of cannabinoid-based molecules has demonstrated to exert symptomatic relief and hence, they are proposed as new potential therapeutic compounds. This review article summarizes the main evidences indicating the beneficial action of cannabinoid-derived molecules in preclinical models of neonatal hypoxia/ischemic damage. In a second part, we discuss the available evidences of therapeutic actions of cannabidiol in children with refractory epilepsy syndromes. Finally, we discuss the current view of cannabinoid signalling mechanisms active in the immature brain that affect in neural cell fate and can contribute to long-term neural cell plasticity.


Assuntos
Encéfalo/metabolismo , Canabinoides/uso terapêutico , Endocanabinoides/metabolismo , Epilepsia/tratamento farmacológico , Hipóxia-Isquemia Encefálica/tratamento farmacológico , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/crescimento & desenvolvimento , Encéfalo/fisiologia , Humanos , Hipóxia-Isquemia Encefálica/etiologia , Recém-Nascido , Receptores de Canabinoides/metabolismo , Transdução de Sinais
8.
Int J Mol Sci ; 18(4)2017 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-28333097

RESUMO

Several cannabinoids afforded neuroprotection in experimental models of Huntington's disease (HD). We investigated whether a 1:1 combination of botanical extracts enriched in either ∆8-tetrahydrocannabinol (∆8-THC) or cannabidiol (CBD), which are the main constituents of the cannabis-based medicine Sativex®, is beneficial in R6/2 mice (a transgenic model of HD), as it was previously shown to have positive effects in neurotoxin-based models of HD. We recorded the progression of neurological deficits and the extent of striatal deterioration, using behavioral, in vivo imaging, and biochemical methods in R6/2 mice and their corresponding wild-type mice. The mice were daily treated, starting at 4 weeks after birth, with a Sativex-like combination of phytocannabinoids (equivalent to 3 mg/kg weight of pure CBD + ∆8-THC) or vehicle. R6/2 mice exhibited the characteristic deterioration in rotarod performance that initiated at 6 weeks and progressed up to 10 weeks, and elevated clasping behavior reflecting dystonia. Treatment with the Sativex-like combination of phytocannabinoids did not recover rotarod performance, but markedly attenuated clasping behavior. The in vivo positron emission tomography (PET) analysis of R6/2 animals at 10 weeks revealed a reduced metabolic activity in the basal ganglia, which was partially attenuated by treatment with the Sativex-like combination of phytocannabinoids. Proton nuclear magnetic resonance spectroscopy (H⁺-MRS) analysis of the ex vivo striatum of R6/2 mice at 12 weeks revealed changes in various prognostic markers reflecting events typically found in HD patients and animal models, such as energy failure, mitochondrial dysfunction, and excitotoxicity. Some of these changes (taurine/creatine, taurine/N-acetylaspartate, and N-acetylaspartate/choline ratios) were completely reversed by treatment with the Sativex-like combination of phytocannabinoids. A Sativex-like combination of phytocannabinoids administered to R6/2 mice at the onset of motor symptoms produced certain benefits on the progression of striatal deterioration in these mice, which supports the interest of this cannabinoid-based medicine for the treatment of disease progression in HD patients.


Assuntos
Canabinoides/uso terapêutico , Doença de Huntington/diagnóstico por imagem , Extratos Vegetais/uso terapêutico , Animais , Gânglios da Base/diagnóstico por imagem , Gânglios da Base/efeitos dos fármacos , Gânglios da Base/metabolismo , Canabidiol , Canabinoides/administração & dosagem , Canabinoides/farmacologia , Corpo Estriado/diagnóstico por imagem , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/metabolismo , Dronabinol , Combinação de Medicamentos , Locomoção , Camundongos , Mitocôndrias/metabolismo , Extratos Vegetais/administração & dosagem , Extratos Vegetais/farmacologia
9.
J Neurol ; 263(7): 1390-400, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27159993

RESUMO

Huntington's disease (HD) is a neurodegenerative disease for which there is no curative treatment available. Given that the endocannabinoid system is involved in the pathogenesis of HD mouse models, stimulation of specific targets within this signaling system has been investigated as a promising therapeutic agent in HD. We conducted a double-blind, randomized, placebo-controlled, cross-over pilot clinical trial with Sativex(®), a botanical extract with an equimolecular combination of delta-9-tetrahydrocannabinol and cannabidiol. Both Sativex(®) and placebo were dispensed as an oral spray, to be administered up to 12 sprays/day for 12 weeks. The primary objective was safety, assessed by the absence of more severe adverse events (SAE) and no greater deterioration of motor, cognitive, behavioral and functional scales during the phase of active treatment. Secondary objectives were clinical improvement of Unified Huntington Disease Rating Scale scores. Twenty-six patients were randomized and 24 completed the trial. After ruling-out period and sequence effects, safety and tolerability were confirmed. No differences on motor (p = 0.286), cognitive (p = 0.824), behavioral (p = 1.0) and functional (p = 0.581) scores were detected during treatment with Sativex(®) as compared to placebo. No significant molecular effects were detected on the biomarker analysis. Sativex(®) is safe and well tolerated in patients with HD, with no SAE or clinical worsening. No significant symptomatic effects were detected at the prescribed dosage and for a 12-week period. Also, no significant molecular changes were observed on the biomarkers. Future study designs should consider higher doses, longer treatment periods and/or alternative cannabinoid combinations.Clincaltrals.gov identifier: NCT01502046.


Assuntos
Doença de Huntington/tratamento farmacológico , Extratos Vegetais/uso terapêutico , Estruturas Vegetais , Adulto , Aminoácidos/farmacologia , Peptídeos beta-Amiloides/líquido cefalorraquidiano , Monoaminas Biogênicas/líquido cefalorraquidiano , Canabidiol , Estudos Cross-Over , Dronabinol , Combinação de Medicamentos , Endocanabinoides/genética , Endocanabinoides/metabolismo , Feminino , Fibroblastos/efeitos dos fármacos , Seguimentos , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Doença de Huntington/sangue , Doença de Huntington/líquido cefalorraquidiano , Masculino , Entrevista Psiquiátrica Padronizada , MicroRNAs/sangue , Pessoa de Meia-Idade , Avaliação de Resultados em Cuidados de Saúde , Fragmentos de Peptídeos/líquido cefalorraquidiano , Projetos Piloto , Índice de Gravidade de Doença , Proteínas tau/líquido cefalorraquidiano
10.
Pharmacol Res Perspect ; 4(2): e00220, 2016 04.
Artigo em Inglês | MEDLINE | ID: mdl-27069631

RESUMO

Cannabidiol (CBD) reduces seizures in childhood epilepsy syndromes including Dravet syndrome (DS). A formulation of CBD has obtained orphan drug designation for these syndromes and clinical trials are currently underway. The mechanism responsible for CBD effects is not known, although it could involve targets sensitive to CBD in other neurological disorders. We believe of interest to investigate whether these potential targets are altered in DS, in particular whether the endocannabinoid system is dysregulated. To this end, lymphocytes from patients and controls were used for analysis of gene expression of transmitter receptors and transporters, ion channels, and enzymes associated with CBD effects, as well as endocannabinoid genes. Plasma endocannabinoid levels were also analyzed. There were no differences between DS patients and controls in most of the CBD targets analyzed, except an increase in the voltage-dependent calcium channel α-1h subunit. We also found that cannabinoid type-2 (CB 2) receptor gene expression was elevated in DS patients, with no changes in other endocannabinoid-related receptors and enzymes, as well as in plasma levels of endocannabinoids. Such elevation was paralleled by an increase in CD70, a marker of lymphocyte activation, and certain trends in inflammation-related proteins (e.g., peroxisome proliferator-activated receptor-γ receptors, cytokines). In conclusion, together with changes in the voltage-dependent calcium channel α-1h subunit, we found an upregulation of CB 2 receptors, associated with an activation of lymphocytes and changes in inflammation-related genes, in DS patients. Such changes were also reported in inflammatory disorders and may indirectly support the occurrence of a potential dysregulation of the endocannabinoid system in the brain.

11.
Neurotherapeutics ; 12(1): 185-99, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25252936

RESUMO

Different plant-derived and synthetic cannabinoids have shown to be neuroprotective in experimental models of Huntington's disease (HD) through cannabinoid receptor-dependent and/or independent mechanisms. Herein, we studied the effects of cannabigerol (CBG), a nonpsychotropic phytocannabinoid, in 2 different in vivo models of HD. CBG was extremely active as neuroprotectant in mice intoxicated with 3-nitropropionate (3NP), improving motor deficits and preserving striatal neurons against 3NP toxicity. In addition, CBG attenuated the reactive microgliosis and the upregulation of proinflammatory markers induced by 3NP, and improved the levels of antioxidant defenses that were also significantly reduced by 3NP. We also investigated the neuroprotective properties of CBG in R6/2 mice. Treatment with this phytocannabinoid produced a much lower, but significant, recovery in the deteriorated rotarod performance typical of R6/2 mice. Using HD array analysis, we were able to identify a series of genes linked to this disease (e.g., symplekin, Sin3a, Rcor1, histone deacetylase 2, huntingtin-associated protein 1, δ subunit of the gamma-aminobutyric acid-A receptor (GABA-A), and hippocalcin), whose expression was altered in R6/2 mice but partially normalized by CBG treatment. We also observed a modest improvement in the gene expression for brain-derived neurotrophic factor (BDNF), insulin-like growth factor-1 (IGF-1), and peroxisome proliferator-activated receptor-γ (PPARγ), which is altered in these mice, as well as a small, but significant, reduction in the aggregation of mutant huntingtin in the striatal parenchyma in CBG-treated animals. In conclusion, our results open new research avenues for the use of CBG, alone or in combination with other phytocannabinoids or therapies, for the treatment of neurodegenerative diseases such as HD.


Assuntos
Encéfalo/efeitos dos fármacos , Canabinoides/farmacologia , Doença de Huntington/patologia , Fármacos Neuroprotetores/farmacologia , Animais , Modelos Animais de Doenças , Doença de Huntington/induzido quimicamente , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Nitrocompostos/toxicidade , Propionatos/toxicidade , Reação em Cadeia da Polimerase em Tempo Real
12.
Proc Natl Acad Sci U S A ; 111(22): 8257-62, 2014 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-24843137

RESUMO

The CB1 cannabinoid receptor, the main molecular target of endocannabinoids and cannabis active components, is the most abundant G protein-coupled receptor in the mammalian brain. Of note, CB1 receptors are expressed at the synapses of two opposing (i.e., GABAergic/inhibitory and glutamatergic/excitatory) neuronal populations, so the activation of one and/or another receptor population may conceivably evoke different effects. Despite the widely reported neuroprotective activity of the CB1 receptor in animal models, the precise pathophysiological relevance of those two CB1 receptor pools in neurodegenerative processes is unknown. Here, we first induced excitotoxic damage in the mouse brain by (i) administering quinolinic acid to conditional mutant animals lacking CB1 receptors selectively in GABAergic or glutamatergic neurons, and (ii) manipulating corticostriatal glutamatergic projections remotely with a designer receptor exclusively activated by designer drug pharmacogenetic approach. We next examined the alterations that occur in the R6/2 mouse, a well-established model of Huntington disease, upon (i) fully knocking out CB1 receptors, and (ii) deleting CB1 receptors selectively in corticostriatal glutamatergic or striatal GABAergic neurons. The data unequivocally identify the restricted population of CB1 receptors located on glutamatergic terminals as an indispensable player in the neuroprotective activity of (endo)cannabinoids, therefore suggesting that this precise receptor pool constitutes a promising target for neuroprotective therapeutic strategies.


Assuntos
Córtex Cerebral/fisiologia , Corpo Estriado/fisiologia , Neurônios/fisiologia , Receptor CB1 de Canabinoide/fisiologia , Idoso , Animais , Proteínas de Caenorhabditis elegans/metabolismo , Córtex Cerebral/citologia , Corpo Estriado/citologia , Endocanabinoides/metabolismo , Endocanabinoides/fisiologia , Endocanabinoides/uso terapêutico , Feminino , Neurônios GABAérgicos/metabolismo , Neurônios GABAérgicos/fisiologia , Ácido Glutâmico/metabolismo , Humanos , Integrases/genética , Masculino , Camundongos , Camundongos Knockout , Pessoa de Meia-Idade , Doenças Neurodegenerativas/tratamento farmacológico , Doenças Neurodegenerativas/fisiopatologia , Neurônios/metabolismo , Neurotoxinas/metabolismo , Técnicas de Cultura de Órgãos , Receptor CB1 de Canabinoide/genética , Receptor CB1 de Canabinoide/metabolismo , Receptores de GABA-A/metabolismo , Sinaptossomos/fisiologia
13.
J Alzheimers Dis ; 35(3): 525-39, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23478312

RESUMO

Cannabinoids are neuroprotective in models of neurodegenerative dementias. Their effects are mostly mediated through CB1 and CB2 receptor-dependent modulation of excitotoxicity, inflammation, oxidative stress, and other processes. We tested the effects of Sativex®, a mixture of Δ9-tetrahydrocannabinol and cannabidiol, acting on both CB1 and CB2 receptors, in parkin-null, human tau overexpressing (PK-/-/TauVLW) mice, a model of complex frontotemporal dementia, parkinsonism, and lower motor neuron disease. The animals received Sativex®, 4.63 mg/kg, ip, daily, for one month, at six months of age, at the onset of the clinical symptoms. We evaluated the effects of Sativex® on behavior, dopamine neurotransmission, glial activation, redox state, mitochondrial activity, and deposition of abnormal proteins. PK-/-/TauVLW mice developed the neurological deficits, but those treated with Sativex® showed less abnormal behaviors related to stress, less auto and hetero-aggression, and less stereotypy. Sativex® significantly reduced the intraneuronal, MAO-related free radicals produced during dopamine metabolism in the limbic system. Sativex® also decreased gliosis in cortex and hippocampus, increased the ratio reduced/oxidized glutathione in the limbic system, reduced the levels of iNOS, and increased those of complex IV in the cerebral cortex. With regard to tau and amyloid pathology, Sativex® reduced the deposition of both in the hippocampus and cerebral cortex of PK-/-/TauVLW mice and increased autophagy. Sativex®, even after a short administration in animals with present behavioral and pathological abnormalities, improves the phenotype, the oxidative stress, and the deposition of proteins in PK-/-/TauVLW mice, a model of complex neurodegenerative disorders.


Assuntos
Amiloidose/fisiopatologia , Modelos Animais de Doenças , Dopamina/fisiologia , Demência Frontotemporal/fisiopatologia , Fármacos Neuroprotetores/farmacologia , Fitoterapia , Extratos Vegetais/farmacologia , Transmissão Sináptica/efeitos dos fármacos , Transmissão Sináptica/fisiologia , Tauopatias/fisiopatologia , Amiloidose/patologia , Animais , Comportamento Animal/efeitos dos fármacos , Comportamento Animal/fisiologia , Monoaminas Biogênicas/metabolismo , Canabidiol , Dronabinol , Combinação de Medicamentos , Demência Frontotemporal/patologia , Glutationa/metabolismo , Humanos , Masculino , Camundongos , Camundongos Mutantes Neurológicos , Camundongos Transgênicos , Tauopatias/patologia
14.
Br J Clin Pharmacol ; 75(2): 323-33, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22625422

RESUMO

Cannabidiol (CBD) is a phytocannabinoid with therapeutic properties for numerous disorders exerted through molecular mechanisms that are yet to be completely identified. CBD acts in some experimental models as an anti-inflammatory, anticonvulsant, anti-oxidant, anti-emetic, anxiolytic and antipsychotic agent, and is therefore a potential medicine for the treatment of neuroinflammation, epilepsy, oxidative injury, vomiting and nausea, anxiety and schizophrenia, respectively. The neuroprotective potential of CBD, based on the combination of its anti-inflammatory and anti-oxidant properties, is of particular interest and is presently under intense preclinical research in numerous neurodegenerative disorders. In fact, CBD combined with Δ(9)-tetrahydrocannabinol is already under clinical evaluation in patients with Huntington's disease to determine its potential as a disease-modifying therapy. The neuroprotective properties of CBD do not appear to be exerted by the activation of key targets within the endocannabinoid system for plant-derived cannabinoids like Δ(9)-tetrahydrocannabinol, i.e. CB(1) and CB(2) receptors, as CBD has negligible activity at these cannabinoid receptors, although certain activity at the CB(2) receptor has been documented in specific pathological conditions (i.e. damage of immature brain). Within the endocannabinoid system, CBD has been shown to have an inhibitory effect on the inactivation of endocannabinoids (i.e. inhibition of FAAH enzyme), thereby enhancing the action of these endogenous molecules on cannabinoid receptors, which is also noted in certain pathological conditions. CBD acts not only through the endocannabinoid system, but also causes direct or indirect activation of metabotropic receptors for serotonin or adenosine, and can target nuclear receptors of the PPAR family and also ion channels.


Assuntos
Canabidiol/farmacologia , Doença de Huntington/tratamento farmacológico , Isquemia/tratamento farmacológico , Doenças Neurodegenerativas/tratamento farmacológico , Canabinoides/farmacologia , Humanos
15.
ACS Chem Neurosci ; 3(5): 400-6, 2012 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-22860209

RESUMO

We have investigated whether a 1:1 combination of botanical extracts enriched in either Δ(9)-tetrahydrocannabinol (Δ(9)-THC) or cannabidiol (CBD), which are the main constituents of the cannabis-based medicine Sativex, is neuroprotective in Huntington's disease (HD), using an experimental model of this disease generated by unilateral lesions of the striatum with the mitochondrial complex II inhibitor malonate. This toxin damages striatal neurons by mechanisms that primarily involve apoptosis and microglial activation. We monitored the extent of this damage and the possible preservation of the striatal parenchyma by treatment with a Sativex-like combination of phytocannabinoids using different histological and biochemical markers. Results were as follows: (i) malonate increased the volume of edema measured by in vivo NMR imaging and the Sativex-like combination of phytocannabinoids partially reduced this increase; (ii) malonate reduced the number of Nissl-stained cells, while enhancing the number of degenerating cells stained with FluoroJade-B, and the Sativex-like combination of phytocannabinoids reversed both effects; (iii) malonate caused a strong glial activation (i.e., reactive microglia labeled with Iba-1, and astrogliosis labeled with GFAP) and the Sativex-like combination of phytocannabinoids attenuated both responses; and (iv) malonate increased the expression of inducible nitric oxide synthase and the neurotrophin IGF-1, and both responses were attenuated after the treatment with the Sativex-like combination of phytocannabinoids. We also wanted to establish whether targets within the endocannabinoid system (i.e., CB(1) and CB(2) receptors) are involved in the beneficial effects induced in this model by the Sativex-like combination of phytocannabinoids. This we did using selective antagonists for both receptor types (i.e., SR141716 and AM630) combined with the Sativex-like phytocannabinoid combination. Our results indicated that the effects of this combination are blocked by these antagonists and hence that they do result from an activation of both CB(1) and CB(2) receptors. In summary, this study provides preclinical evidence in support of a beneficial effect of the cannabis-based medicine Sativex as a neuroprotective agent capable of delaying signs of disease progression in a proinflammatory model of HD, which adds to previous data obtained in models priming oxidative mechanisms of striatal injury. However, the interest here is that, in contrast with these previous data, we have now obtained evidence that both CB(1) and CB(2) receptors appear to be involved in the effects produced by a Sativex-like phytocannabinoid combination, thus stressing the broad-spectrum properties of Sativex that may combine activity at the CB(1) and/or CB(2) receptors with cannabinoid receptor-independent actions.


Assuntos
Modelos Animais de Doenças , Doença de Huntington/prevenção & controle , Malonatos/toxicidade , Extratos Vegetais/administração & dosagem , Receptor CB1 de Canabinoide/fisiologia , Receptor CB2 de Canabinoide/fisiologia , Animais , Canabidiol , Canabinoides/administração & dosagem , Dronabinol , Combinação de Medicamentos , Quimioterapia Combinada , Doença de Huntington/induzido quimicamente , Doença de Huntington/patologia , Inflamação/induzido quimicamente , Inflamação/patologia , Inflamação/prevenção & controle , Masculino , Fitoterapia/métodos , Ratos , Ratos Sprague-Dawley , Receptor CB1 de Canabinoide/agonistas , Receptor CB2 de Canabinoide/agonistas
16.
Recent Pat CNS Drug Discov ; 7(1): 41-8, 2012 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-22280340

RESUMO

Cannabinoid pharmacology has experienced a notable increase in the last 3 decades which is allowing the development of novel cannabinoid-based medicines for the treatment of different human pathologies, for example, Cesamet® (nabilone) or Marinol® (synthetic Δ9-tetrahydrocannabinol for oral administration) that were approved in 80s for the treatment of nausea and vomiting associated with chemotherapy treatment in cancer patients and in 90s for anorexiacachexia associated with AIDS therapy. Recently, the british company GW Pharmaceuticals plc has developed an oromucosal spray called Sativex®, which is constituted by an equimolecular combination of Δ9-tetrahydrocannabinol- and cannabidiol- enriched botanical extracts. Sativex® has been approved for the treatment of specific symptoms (i.e. spasticity and pain) of multiple sclerosis patients in various countries (i.e. Canada, UK, Spain, New Zealand). However, this cannabis- based medicine has been also proposed to be useful in other neurological disorders given the analgesic, antitumoral, anti-inflammatory, and neuroprotective properties of their components demonstrated in preclinical models. Numerous clinical trials are presently being conducted to confirm this potential in patients. We are particularly interested in the case of Huntington's disease (HD), an autosomal-dominant inherited disorder caused by an excess of CAG repeats in the genomic allele resulting in a polyQ expansion in the encoded protein called huntingtin, and that affects primarily striatal and cortical neurons thus producing motor abnormalities (i.e. chorea) and dementia. Cannabinoids have been studied for alleviation of hyperkinetic symptoms, given their inhibitory effects on movement, and, in particular, as disease-modifying agents due to their anti-inflammatory, neuroprotective and neuroregenerative properties. This potential has been corroborated in different experimental models of HD and using different types of cannabinoid agonists, including the phytocannabinoids present in Sativex®, and we are close to initiate a clinical trial with this cannabis-based medicine to evaluate its capability as a disease-modifying agent in a population of HD patients. The present review will address all preclinical evidence supporting the potential of Sativex® for the treatment of disease progression in HD patients. The article presents some promising patents on the cannabinoids.


Assuntos
Canabinoides/metabolismo , Canabinoides/uso terapêutico , Doença de Huntington/tratamento farmacológico , Doença de Huntington/metabolismo , Fármacos Neuroprotetores/uso terapêutico , Animais , Descoberta de Drogas/métodos , Descoberta de Drogas/tendências , Humanos , Doença de Huntington/genética , Modelos Biológicos
17.
J Med Chem ; 54(23): 7986-99, 2011 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-22029386

RESUMO

We report the synthesis of new compounds 4-35 based on structural modifications of different moieties of previously described lead UCM-2550. The new nonpiperazine derivatives, representing second-generation agonists, were assessed for binding affinity, selectivity, and functional activity at the 5-HT(1A) receptor (5-HT(1A)R). Computational ß(2)-based homology models of the ligand-receptor complexes were used to explain the observed structure-affinity relationships. Selected candidates were also evaluated for their potential in vitro and in vivo neuroprotective properties. Interestingly, compound 26 (2-{6-[(3,4-dihydro-2H-chromen-2-ylmethyl)amino]hexyl}tetrahydro-1H-pyrrolo[1,2-c]imidazole-1,3(2H)-dione) has been characterized as a high-affinity and potent 5-HT(1A)R agonist (K(i) = 5.9 nM, EC(50) = 21.8 nM) and exhibits neuroprotective effect in neurotoxicity assays in primary cell cultures from rat hippocampus and in the MCAO model of focal cerebral ischemia in rats.


Assuntos
Benzopiranos/síntese química , Compostos Bicíclicos Heterocíclicos com Pontes/síntese química , Ataque Isquêmico Transitório/tratamento farmacológico , Fármacos Neuroprotetores/síntese química , Receptor 5-HT1A de Serotonina/metabolismo , Agonistas do Receptor 5-HT1 de Serotonina/síntese química , Sequência de Aminoácidos , Animais , Benzopiranos/química , Benzopiranos/farmacologia , Compostos Bicíclicos Heterocíclicos com Pontes/química , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Morte Celular , Células Cultivadas , Infarto Cerebral/tratamento farmacológico , Infarto Cerebral/patologia , Hipocampo/citologia , Ataque Isquêmico Transitório/patologia , Modelos Moleculares , Dados de Sequência Molecular , Neurônios/citologia , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/química , Fármacos Neuroprotetores/farmacologia , Ensaio Radioligante , Ratos , Agonistas do Receptor 5-HT1 de Serotonina/química , Agonistas do Receptor 5-HT1 de Serotonina/farmacologia , Relação Estrutura-Atividade
18.
J Neurosci Res ; 89(9): 1509-18, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21674569

RESUMO

We studied whether combinations of botanical extracts enriched in either Δ(9)-tetrahydrocannabinol (Δ(9)-THC) or cannabidiol (CBD), which are the main constituents of the cannabis-based medicine Sativex, provide neuroprotection in rat models of Huntington's disease (HD). We used rats intoxicated with 3-nitropropionate (3NP) that were given combinations of Δ(9)-THC- and CBD-enriched botanical extracts. The issue was also studied in malonate-lesioned rats. The administration of Δ(9)-THC- and CBD-enriched botanical extracts combined in a ratio of 1:1 as in Sativex attenuated 3NP-induced GABA deficiency, loss of Nissl-stained neurons, down-regulation of CB(1) receptor and IGF-1 expression, and up-regulation of calpain expression, whereas it completely reversed the reduction in superoxide dismutase-1 expression. Similar responses were generally found with other combinations of Δ(9)-THC- and CBD-enriched botanical extracts, suggesting that these effects are probably related to the antioxidant and CB(1) and CB(2) receptor-independent properties of both phytocannabinoids. In fact, selective antagonists for both receptor types, i.e., SR141716 and AM630, respectively, were unable to prevent the positive effects on calpain expression caused in 3NP-intoxicated rats by the 1:1 combination of Δ(9)-THC and CBD. Finally, this combination also reversed the up-regulation of proinflammatory markers such as inducible nitric oxide synthase observed in malonate-lesioned rats. In conclusion, this study provides preclinical evidence in support of a beneficial effect of the cannabis-based medicine Sativex as a neuroprotective agent capable of delaying disease progression in HD, a disorder that is currently poorly managed in the clinic, prompting an urgent need for clinical trials with agents showing positive results in preclinical studies.


Assuntos
Canabinoides/uso terapêutico , Núcleo Caudado/efeitos dos fármacos , Doença de Huntington/tratamento farmacológico , Fármacos Neuroprotetores/uso terapêutico , Fitoterapia , Putamen/efeitos dos fármacos , Animais , Canabidiol/uso terapêutico , Núcleo Caudado/citologia , Células Cultivadas , Modelos Animais de Doenças , Progressão da Doença , Dronabinol/uso terapêutico , Combinação de Medicamentos , Doença de Huntington/patologia , Masculino , Neostriado/efeitos dos fármacos , Neostriado/patologia , Extratos Vegetais/uso terapêutico , Putamen/citologia , Ratos , Ratos Sprague-Dawley
19.
Brain ; 134(Pt 1): 119-36, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20929960

RESUMO

Endocannabinoids act as neuromodulatory and neuroprotective cues by engaging type 1 cannabinoid receptors. These receptors are highly abundant in the basal ganglia and play a pivotal role in the control of motor behaviour. An early downregulation of type 1 cannabinoid receptors has been documented in the basal ganglia of patients with Huntington's disease and animal models. However, the pathophysiological impact of this loss of receptors in Huntington's disease is as yet unknown. Here, we generated a double-mutant mouse model that expresses human mutant huntingtin exon 1 in a type 1 cannabinoid receptor-null background, and found that receptor deletion aggravates the symptoms, neuropathology and molecular pathology of the disease. Moreover, pharmacological administration of the cannabinoid Δ(9)-tetrahydrocannabinol to mice expressing human mutant huntingtin exon 1 exerted a therapeutic effect and ameliorated those parameters. Experiments conducted in striatal cells show that the mutant huntingtin-dependent downregulation of the receptors involves the control of the type 1 cannabinoid receptor gene promoter by repressor element 1 silencing transcription factor and sensitizes cells to excitotoxic damage. We also provide in vitro and in vivo evidence that supports type 1 cannabinoid receptor control of striatal brain-derived neurotrophic factor expression and the decrease in brain-derived neurotrophic factor levels concomitant with type 1 cannabinoid receptor loss, which may contribute significantly to striatal damage in Huntington's disease. Altogether, these results support the notion that downregulation of type 1 cannabinoid receptors is a key pathogenic event in Huntington's disease, and suggest that activation of these receptors in patients with Huntington's disease may attenuate disease progression.


Assuntos
Corpo Estriado/metabolismo , Doença de Huntington/genética , Neurônios/metabolismo , Receptor CB1 de Canabinoide/genética , Análise de Variância , Animais , Western Blotting , Sobrevivência Celular , Dronabinol/farmacologia , Hormônio Liberador de Hormônio do Crescimento/análogos & derivados , Doença de Huntington/metabolismo , Imageamento por Ressonância Magnética , Masculino , Camundongos , Camundongos Transgênicos , Atividade Motora/efeitos dos fármacos , Receptor CB1 de Canabinoide/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Teste de Desempenho do Rota-Rod
20.
Expert Opin Ther Targets ; 14(4): 387-404, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20230193

RESUMO

IMPORTANCE OF THE FIELD: Cannabinoids have been proposed as clinically promising neuroprotective molecules, based on their capability to normalize glutamate homeostasis, reducing excitotoxicity, to inhibit calcium influx, lowering intracellular levels and the subsequent activation of calcium-dependent destructive pathways, and to reduce the generation of reactive oxygen intermediates or to limit their toxicity, decreasing oxidative injury. Cannabinoids are also able to decrease local inflammatory events by acting on glial processes that regulate neuronal survival, and to restore blood supply by reducing vasocontriction produced by several endothelium-derived factors. AREAS COVERED IN THIS REVIEW: Current literature supporting these neuroprotective effects, particularly evidence generated during the last ten years, concentrating on targets within the cannabinoid signaling system that facilitate these effects. Acute or chronic neurodegenerative disorders where cannabinoids have shown neuroprotective effect. WHAT THE READER WILL GAIN: Most of the information reviewed here relates to preclinical studies. However, these molecules may progress from the present preclinical evidence to clinical applications. TAKE HOME MESSAGE: Treatment of neurodegenerative disorders is a challenge for neuroscientists and neurologists. Unhappily, the efficacy of available medicines is still poor and there is an urgent need for novel neuroprotective agents. Cannabinoids can serve this purpose given their recognized antiexcitotoxic, antioxidant and anti-inflammatory properties.


Assuntos
Moduladores de Receptores de Canabinoides/fisiologia , Endocanabinoides , Doenças do Sistema Nervoso/tratamento farmacológico , Fármacos Neuroprotetores/farmacologia , Receptores de Canabinoides/efeitos dos fármacos , Animais , Morte Celular/fisiologia , Sobrevivência Celular/fisiologia , Humanos , Fármacos Neuroprotetores/uso terapêutico , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...