Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38663817

RESUMO

BACKGROUND: Alternaria alternata is associated with allergic respiratory diseases, which can be managed with allergen extract-based diagnostics and immunotherapy. It is not known how spores and hyphae contribute to allergen content. Commercial allergen extracts are manufactured by extracting proteins without separating the different forms of the fungus. OBJECTIVE: We sought to determine differences between spore and hyphae proteomes and how allergens are distributed in Aalternata. METHODS: Data-independent acquisition mass spectrometry was used to quantitatively compare the proteomes of asexual spores (nongerminating and germinating) with vegetative hyphae. RESULTS: We identified 4515 proteins in nongerminating spores, germinating spores, and hyphae; most known allergens are more abundant in nongerminating spores. On comparing significant protein fold-change differences between nongerminating spores and hyphae, we found that 174 proteins were upregulated in nongerminating spores and 80 proteins in hyphae. Among the spore proteins are ones functionally involved in cell wall synthesis, responding to cellular stress, and maintaining redox balance and homeostasis. On comparing nongerminating and germinating spores, 25 proteins were found to be upregulated in nongerminating spores and 54 in germinating spores. Among the proteins specific to germinating spores were proteases known to be virulence factors. One of the most abundant proteins in the spore proteome is sialidase, which has not been identified as an allergen but may be important in the pathogenicity of this fungus. Major allergen Alt a 1 is present at low levels in spores and hyphae and appears to be largely secreted into growth media. CONCLUSIONS: Spores and hyphae express overlapping but distinct proteomes. Most known allergens are found more abundantly in nongerminating spores.

2.
Pharmaceuticals (Basel) ; 13(10)2020 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-32992923

RESUMO

Iron is an essential element required to support the health of organisms. This element is critical for regulating the activities of cellular enzymes including those involved in cellular metabolism and DNA replication. Mechanisms that underlie the tight control of iron levels are crucial in mediating the interaction between microorganisms and their host and hence, the spread of infection. Microorganisms including viruses, bacteria, and fungi have differing iron acquisition/utilization mechanisms to support their ability to acquire/use iron (e.g., from free iron and heme). These pathways of iron uptake are associated with promoting their growth and virulence and consequently, their pathogenicity. Thus, controlling microorganismal survival by limiting iron availability may prove feasible through the use of agents targeting their iron uptake pathways and/or use of iron chelators as a means to hinder development of infections. This review will serve to assimilate findings regarding iron and the pathogenicity of specific microorganisms, and furthermore, find whether treating infections mediated by such organisms via iron chelation approaches may have potential clinical benefit.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...