Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Lancet Oncol ; 25(7): 879-887, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38876123

RESUMO

BACKGROUND: Artificial intelligence (AI) systems can potentially aid the diagnostic pathway of prostate cancer by alleviating the increasing workload, preventing overdiagnosis, and reducing the dependence on experienced radiologists. We aimed to investigate the performance of AI systems at detecting clinically significant prostate cancer on MRI in comparison with radiologists using the Prostate Imaging-Reporting and Data System version 2.1 (PI-RADS 2.1) and the standard of care in multidisciplinary routine practice at scale. METHODS: In this international, paired, non-inferiority, confirmatory study, we trained and externally validated an AI system (developed within an international consortium) for detecting Gleason grade group 2 or greater cancers using a retrospective cohort of 10 207 MRI examinations from 9129 patients. Of these examinations, 9207 cases from three centres (11 sites) based in the Netherlands were used for training and tuning, and 1000 cases from four centres (12 sites) based in the Netherlands and Norway were used for testing. In parallel, we facilitated a multireader, multicase observer study with 62 radiologists (45 centres in 20 countries; median 7 [IQR 5-10] years of experience in reading prostate MRI) using PI-RADS (2.1) on 400 paired MRI examinations from the testing cohort. Primary endpoints were the sensitivity, specificity, and the area under the receiver operating characteristic curve (AUROC) of the AI system in comparison with that of all readers using PI-RADS (2.1) and in comparison with that of the historical radiology readings made during multidisciplinary routine practice (ie, the standard of care with the aid of patient history and peer consultation). Histopathology and at least 3 years (median 5 [IQR 4-6] years) of follow-up were used to establish the reference standard. The statistical analysis plan was prespecified with a primary hypothesis of non-inferiority (considering a margin of 0·05) and a secondary hypothesis of superiority towards the AI system, if non-inferiority was confirmed. This study was registered at ClinicalTrials.gov, NCT05489341. FINDINGS: Of the 10 207 examinations included from Jan 1, 2012, through Dec 31, 2021, 2440 cases had histologically confirmed Gleason grade group 2 or greater prostate cancer. In the subset of 400 testing cases in which the AI system was compared with the radiologists participating in the reader study, the AI system showed a statistically superior and non-inferior AUROC of 0·91 (95% CI 0·87-0·94; p<0·0001), in comparison to the pool of 62 radiologists with an AUROC of 0·86 (0·83-0·89), with a lower boundary of the two-sided 95% Wald CI for the difference in AUROC of 0·02. At the mean PI-RADS 3 or greater operating point of all readers, the AI system detected 6·8% more cases with Gleason grade group 2 or greater cancers at the same specificity (57·7%, 95% CI 51·6-63·3), or 50·4% fewer false-positive results and 20·0% fewer cases with Gleason grade group 1 cancers at the same sensitivity (89·4%, 95% CI 85·3-92·9). In all 1000 testing cases where the AI system was compared with the radiology readings made during multidisciplinary practice, non-inferiority was not confirmed, as the AI system showed lower specificity (68·9% [95% CI 65·3-72·4] vs 69·0% [65·5-72·5]) at the same sensitivity (96·1%, 94·0-98·2) as the PI-RADS 3 or greater operating point. The lower boundary of the two-sided 95% Wald CI for the difference in specificity (-0·04) was greater than the non-inferiority margin (-0·05) and a p value below the significance threshold was reached (p<0·001). INTERPRETATION: An AI system was superior to radiologists using PI-RADS (2.1), on average, at detecting clinically significant prostate cancer and comparable to the standard of care. Such a system shows the potential to be a supportive tool within a primary diagnostic setting, with several associated benefits for patients and radiologists. Prospective validation is needed to test clinical applicability of this system. FUNDING: Health~Holland and EU Horizon 2020.


Assuntos
Inteligência Artificial , Imageamento por Ressonância Magnética , Neoplasias da Próstata , Radiologistas , Humanos , Masculino , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/patologia , Idoso , Estudos Retrospectivos , Pessoa de Meia-Idade , Gradação de Tumores , Países Baixos , Curva ROC
2.
BMC Oral Health ; 24(1): 387, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38532414

RESUMO

OBJECTIVE: Panoramic radiographs (PRs) provide a comprehensive view of the oral and maxillofacial region and are used routinely to assess dental and osseous pathologies. Artificial intelligence (AI) can be used to improve the diagnostic accuracy of PRs compared to bitewings and periapical radiographs. This study aimed to evaluate the advantages and challenges of using publicly available datasets in dental AI research, focusing on solving the novel task of predicting tooth segmentations, FDI numbers, and tooth diagnoses, simultaneously. MATERIALS AND METHODS: Datasets from the OdontoAI platform (tooth instance segmentations) and the DENTEX challenge (tooth bounding boxes with associated diagnoses) were combined to develop a two-stage AI model. The first stage implemented tooth instance segmentation with FDI numbering and extracted regions of interest around each tooth segmentation, whereafter the second stage implemented multi-label classification to detect dental caries, impacted teeth, and periapical lesions in PRs. The performance of the automated tooth segmentation algorithm was evaluated using a free-response receiver-operating-characteristics (FROC) curve and mean average precision (mAP) metrics. The diagnostic accuracy of detection and classification of dental pathology was evaluated with ROC curves and F1 and AUC metrics. RESULTS: The two-stage AI model achieved high accuracy in tooth segmentations with a FROC score of 0.988 and a mAP of 0.848. High accuracy was also achieved in the diagnostic classification of impacted teeth (F1 = 0.901, AUC = 0.996), whereas moderate accuracy was achieved in the diagnostic classification of deep caries (F1 = 0.683, AUC = 0.960), early caries (F1 = 0.662, AUC = 0.881), and periapical lesions (F1 = 0.603, AUC = 0.974). The model's performance correlated positively with the quality of annotations in the used public datasets. Selected samples from the DENTEX dataset revealed cases of missing (false-negative) and incorrect (false-positive) diagnoses, which negatively influenced the performance of the AI model. CONCLUSIONS: The use and pooling of public datasets in dental AI research can significantly accelerate the development of new AI models and enable fast exploration of novel tasks. However, standardized quality assurance is essential before using the datasets to ensure reliable outcomes and limit potential biases.


Assuntos
Cárie Dentária , Dente Impactado , Dente , Humanos , Inteligência Artificial , Radiografia Panorâmica , Osso e Ossos
3.
Radiol Artif Intell ; 5(5): e230031, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37795142

RESUMO

Purpose: To evaluate a novel method of semisupervised learning (SSL) guided by automated sparse information from diagnostic reports to leverage additional data for deep learning-based malignancy detection in patients with clinically significant prostate cancer. Materials and Methods: This retrospective study included 7756 prostate MRI examinations (6380 patients) performed between January 2014 and December 2020 for model development. An SSL method, report-guided SSL (RG-SSL), was developed for detection of clinically significant prostate cancer using biparametric MRI. RG-SSL, supervised learning (SL), and state-of-the-art SSL methods were trained using 100, 300, 1000, or 3050 manually annotated examinations. Performance on detection of clinically significant prostate cancer by RG-SSL, SL, and SSL was compared on 300 unseen examinations from an external center with a histopathologically confirmed reference standard. Performance was evaluated using receiver operating characteristic (ROC) and free-response ROC analysis. P values for performance differences were generated with a permutation test. Results: At 100 manually annotated examinations, mean examination-based diagnostic area under the ROC curve (AUC) values for RG-SSL, SL, and the best SSL were 0.86 ± 0.01 (SD), 0.78 ± 0.03, and 0.81 ± 0.02, respectively. Lesion-based detection partial AUCs were 0.62 ± 0.02, 0.44 ± 0.04, and 0.48 ± 0.09, respectively. Examination-based performance of SL with 3050 examinations was matched by RG-SSL with 169 manually annotated examinations, thus requiring 14 times fewer annotations. Lesion-based performance was matched with 431 manually annotated examinations, requiring six times fewer annotations. Conclusion: RG-SSL outperformed SSL in clinically significant prostate cancer detection and achieved performance similar to SL even at very low annotation budgets.Keywords: Annotation Efficiency, Computer-aided Detection and Diagnosis, MRI, Prostate Cancer, Semisupervised Deep Learning Supplemental material is available for this article. Published under a CC BY 4.0 license.

4.
Eur Radiol Exp ; 6(1): 35, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35909214

RESUMO

Artificial intelligence (AI) for prostate magnetic resonance imaging (MRI) is starting to play a clinical role for prostate cancer (PCa) patients. AI-assisted reading is feasible, allowing workflow reduction. A total of 3,369 multi-vendor prostate MRI cases are available in open datasets, acquired from 2003 to 2021 in Europe or USA at 3 T (n = 3,018; 89.6%) or 1.5 T (n = 296; 8.8%), 346 cases scanned with endorectal coil (10.3%), 3,023 (89.7%) with phased-array surface coils; 412 collected for anatomical segmentation tasks, 3,096 for PCa detection/classification; for 2,240 cases lesions delineation is available and 56 cases have matching histopathologic images; for 2,620 cases the PSA level is provided; the total size of all open datasets amounts to approximately 253 GB. Of note, quality of annotations provided per dataset highly differ and attention must be paid when using these datasets (e.g., data overlap). Seven grand challenges and commercial applications from eleven vendors are here considered. Few small studies provided prospective validation. More work is needed, in particular validation on large-scale multi-institutional, well-curated public datasets to test general applicability. Moreover, AI needs to be explored for clinical stages other than detection/characterization (e.g., follow-up, prognosis, interventions, and focal treatment).


Assuntos
Próstata , Neoplasias da Próstata , Inteligência Artificial , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Próstata/diagnóstico por imagem , Neoplasias da Próstata/diagnóstico por imagem , Sensibilidade e Especificidade
5.
Eur Radiol ; 32(4): 2224-2234, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34786615

RESUMO

OBJECTIVES: To assess Prostate Imaging Reporting and Data System (PI-RADS)-trained deep learning (DL) algorithm performance and to investigate the effect of data size and prior knowledge on the detection of clinically significant prostate cancer (csPCa) in biopsy-naïve men with a suspicion of PCa. METHODS: Multi-institution data included 2734 consecutive biopsy-naïve men with elevated PSA levels (≥ 3 ng/mL) that underwent multi-parametric MRI (mpMRI). mpMRI exams were prospectively reported using PI-RADS v2 by expert radiologists. A DL framework was designed and trained on center 1 data (n = 1952) to predict PI-RADS ≥ 4 (n = 1092) lesions from bi-parametric MRI (bpMRI). Experiments included varying the number of cases and the use of automatic zonal segmentation as a DL prior. Independent center 2 cases (n = 296) that included pathology outcome (systematic and MRI targeted biopsy) were used to compute performance for radiologists and DL. The performance of detecting PI-RADS 4-5 and Gleason > 6 lesions was assessed on 782 unseen cases (486 center 1, 296 center 2) using free-response ROC (FROC) and ROC analysis. RESULTS: The DL sensitivity for detecting PI-RADS ≥ 4 lesions was 87% (193/223, 95% CI: 82-91) at an average of 1 false positive (FP) per patient, and an AUC of 0.88 (95% CI: 0.84-0.91). The DL sensitivity for the detection of Gleason > 6 lesions was 85% (79/93, 95% CI: 77-83) @ 1 FP compared to 91% (85/93, 95% CI: 84-96) @ 0.3 FP for a consensus panel of expert radiologists. Data size and prior zonal knowledge significantly affected performance (4%, [Formula: see text]). CONCLUSION: PI-RADS-trained DL can accurately detect and localize Gleason > 6 lesions. DL could reach expert performance using substantially more than 2000 training cases, and DL zonal segmentation. KEY POINTS: • AI for prostate MRI analysis depends strongly on data size and prior zonal knowledge. • AI needs substantially more than 2000 training cases to achieve expert performance.


Assuntos
Aprendizado Profundo , Imageamento por Ressonância Magnética Multiparamétrica , Neoplasias da Próstata , Humanos , Biópsia Guiada por Imagem , Imageamento por Ressonância Magnética/métodos , Masculino , Próstata/patologia , Neoplasias da Próstata/patologia , Estudos Retrospectivos
6.
Med Image Anal ; 73: 102155, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34245943

RESUMO

We present a multi-stage 3D computer-aided detection and diagnosis (CAD) model2 for automated localization of clinically significant prostate cancer (csPCa) in bi-parametric MR imaging (bpMRI). Deep attention mechanisms drive its detection network, targeting salient structures and highly discriminative feature dimensions across multiple resolutions. Its goal is to accurately identify csPCa lesions from indolent cancer and the wide range of benign pathology that can afflict the prostate gland. Simultaneously, a decoupled residual classifier is used to achieve consistent false positive reduction, without sacrificing high sensitivity or computational efficiency. In order to guide model generalization with domain-specific clinical knowledge, a probabilistic anatomical prior is used to encode the spatial prevalence and zonal distinction of csPCa. Using a large dataset of 1950 prostate bpMRI paired with radiologically-estimated annotations, we hypothesize that such CNN-based models can be trained to detect biopsy-confirmed malignancies in an independent cohort. For 486 institutional testing scans, the 3D CAD system achieves 83.69±5.22% and 93.19±2.96% detection sensitivity at 0.50 and 1.46 false positive(s) per patient, respectively, with 0.882±0.030 AUROC in patient-based diagnosis -significantly outperforming four state-of-the-art baseline architectures (U-SEResNet, UNet++, nnU-Net, Attention U-Net) from recent literature. For 296 external biopsy-confirmed testing scans, the ensembled CAD system shares moderate agreement with a consensus of expert radiologists (76.69%; kappa = 0.51±0.04) and independent pathologists (81.08%; kappa = 0.56±0.06); demonstrating strong generalization to histologically-confirmed csPCa diagnosis.


Assuntos
Neoplasias da Próstata , Biópsia , Humanos , Imageamento por Ressonância Magnética , Masculino , Neoplasias da Próstata/diagnóstico por imagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...