Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Pharm Des ; 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38982925

RESUMO

Biodegradable polymers, encompassing both natural and synthetic polymers, have demonstrated efficacy as carriers for synthetic drugs, natural bioactive molecules, and inorganic metals. This is due to their ability to control the release of these substances. As a result, various advanced materials, such as nanoparticle-loaded hydrogels, nanofibrous scaffolds, and nanocomposites, have been developed. These materials have shown promise in enhancing processes, such as cell proliferation, vascular angiogenesis, hair growth, and wound healing management. Natural polymers, including hyaluronic acid, collagen, chitosan, gelatin, and alginate, as well as synthetic polymers like polylactic acid, polyglycolic acid, polylactic co-glycolic acid, and PCA, have significant potential for promoting wound healing. This study examines the advancements in biodegradable polymers for wound healing, specifically focusing on each polymer and its distinctive formulations. It also discusses the in-vitro experiments conducted using different cell lines, as well as the in-vivo studies that explore the numerous uses of these polymers in wound healing. The discussion also included the exploration of modifications or combinations of several polymers, as well as surface changes, in order to produce synergistic effects and address the limitations of individual polymers. The goal was to expedite the healing process of different chronic wounds. Due to this, there have been notable advancements in the technological use of polymeric mixes, including biodegradable polymer-based scaffolds, which have accelerated the process of wound healing.

3.
Drug Dev Res ; 85(1): e22146, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38349270

RESUMO

Sialic acid (SA) serves a critical role in neuronal repair and cognitive functions. SA is a nine-carbon carboxylated sugar with a glycoconjugate cap that acts as a ligand and surface decoration with SA facilitates delivery to the target site. The present research aimed to develop SA surface modified AA nanostructured lipid carrier (NLCs) with carbodiimide conjugation method. Sterylamine, poloxamer 188 and tween 80 were used as surfactants and several characterization studies including, differential scanning calorimetry, fourier transform infrared spectroscopy and x-ray photon spectroscopy were analyzed. Further, in vitro, neuroprotective efficiency was evaluated in SH-SY5Y cells and hCMEC/D3 cells and found significant potential effects with the treatments of developed NLCs. Pharmacodynamics studies were also assessed in beta-amyloid-injected rats following quantification of Alzheimer's disease (AD) hallmarks like, Aß(1-42), tau-protein, glycogen synthase kinase-3ß levels, interleukin-6 and tumor necrosis factor-α for neuroinflammatory responses. Characterization studies revealed the conjugation on developed NLCs. The in vitro and in vivo results showed significant effects of SA decorated NLCs in reversing the damage by toxicant which was further characterized by the levels of neurotransmitters like acetylcholinesterase, butyrylcholinesterase. The results revealed significant (p < .05) refurbishment of cholinergic functions after 28 days of treatment of developed NLCs. These preclinical findings support the use of SA as a ligand to deliver the AA at targeted site as well as to mitigate the cognitive deficits in AD.


Assuntos
Doença de Alzheimer , Neuroblastoma , Triterpenos Pentacíclicos , Humanos , Animais , Ratos , Ácido N-Acetilneuramínico , Doença de Alzheimer/tratamento farmacológico , Acetilcolinesterase , Butirilcolinesterase , Ligantes , Cognição
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...