Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
1.
Int J Mol Sci ; 25(9)2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38732207

RESUMO

Prediction of binding sites for transcription factors is important to understand how the latter regulate gene expression and how this regulation can be modulated for therapeutic purposes. A consistent number of references address this issue with different approaches, Machine Learning being one of the most successful. Nevertheless, we note that many such approaches fail to propose a robust and meaningful method to embed the genetic data under analysis. We try to overcome this problem by proposing a bidirectional transformer-based encoder, empowered by bidirectional long-short term memory layers and with a capsule layer responsible for the final prediction. To evaluate the efficiency of the proposed approach, we use benchmark ChIP-seq datasets of five cell lines available in the ENCODE repository (A549, GM12878, Hep-G2, H1-hESC, and Hela). The results show that the proposed method can predict TFBS within the five different cell lines very well; moreover, cross-cell predictions provide satisfactory results as well. Experiments conducted across cell lines are reinforced by the analysis of five additional lines used only to test the model trained using the others. The results confirm that prediction across cell lines remains very high, allowing an extensive cross-transcription factor analysis to be performed from which several indications of interest for molecular biology may be drawn.


Assuntos
Aprendizado Profundo , Fatores de Transcrição , Humanos , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Sítios de Ligação , Biologia Computacional/métodos , Células HeLa , Ligação Proteica , Sequenciamento de Cromatina por Imunoprecipitação/métodos , Linhagem Celular
2.
Curr Issues Mol Biol ; 46(3): 2713-2740, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38534787

RESUMO

HER2-positive breast cancer is one of the most prevalent forms of cancer among women worldwide. Generally, the molecular characteristics of this breast cancer include activation of human epidermal growth factor receptor-2 (HER2) and hormone receptor activation. HER2-positive is associated with a higher death rate, which led to the development of a monoclonal antibody called trastuzumab, specifically targeting HER2. The success rate of HER2-positive breast cancer treatment has been increased; however, drug resistance remains a challenge. This fact motivated us to explore the underlying molecular mechanisms of trastuzumab resistance. For this purpose, a two-fold approach was taken by considering well-known breast cancer cell lines SKBR3 and BT474. In the first fold, trastuzumab treatment doses were optimized separately for both cell lines. This was done based on the proliferation rate of cells in response to a wide variety of medication dosages. Thereafter, each cell line was cultivated with a steady dosage of herceptin for several months. During this period, six time points were selected for further in vitro analysis, ranging from the untreated cell line at the beginning to a fully resistant cell line at the end of the experiment. In the second fold, nucleic acids were extracted for further high throughput-based microarray experiments of gene and microRNA expression. Such expression data were further analyzed in order to infer the molecular mechanisms involved in the underlying development of trastuzumab resistance. In the list of differentially expressed genes and miRNAs, multiple genes (e.g., BIRC5, E2F1, TFRC, and USP1) and miRNAs (e.g., hsa miR 574 3p, hsa miR 4530, and hsa miR 197 3p) responsible for trastuzumab resistance were found. Downstream analysis showed that TFRC, E2F1, and USP1 were also targeted by hsa-miR-8485. Moreover, it indicated that miR-4701-5p was highly expressed as compared to TFRC in the SKBR3 cell line. These results unveil key genes and miRNAs as molecular regulators for trastuzumab resistance.

4.
J Fluoresc ; 34(2): 879-884, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37405576

RESUMO

A new carbazole-coupled tetrakis-(1 H-pyrrole-2-carbaldehyde) anion receptor 1 has been designed and synthesized. Anion binding studies in organic media using fluorescence and UV-vis spectroscopy revealed that receptor 1 is capable of sensing HP2O73- with high selectivity. Addition of HP2O73- to THF solution of 1 resulted in the emergence of a new broad band at longer wavelength along with quenching of the original emission band forming a ratiometric response. Based on dynamic light scattering (DLS) experiment and fluorescence lifetime measurement, we propose that the emergence of new emission band in the presence of HP2O73- ion is due to the aggregation-induced excimer formation.

5.
Chem Commun (Camb) ; 59(48): 7407-7410, 2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-37233195

RESUMO

Meso-3,5-bis(trifluoromethyl)phenyl picket calix[4]pyrrole 1 displays excellent fluoride anion transport activity across artificial lipid bilayers showing EC50 = 2.15 µM (at 450 s in EYPC vesicle) with high fluoride over chloride ion selectivity. The high fluoride selectivity of 1 was ascribed to the formation of a sandwich type π-anion-π interaction complex.

6.
Viruses ; 15(5)2023 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-37243274

RESUMO

SARS-CoV-2 and its many variants have caused a worldwide emergency. Host cells colonised by SARS-CoV-2 present a significantly different gene expression landscape. As expected, this is particularly true for genes that directly interact with virus proteins. Thus, understanding the role that transcription factors can play in driving differential regulation in patients affected by COVID-19 is a focal point to unveil virus infection. In this regard, we have identified 19 transcription factors which are predicted to target human proteins interacting with Spike glycoprotein of SARS-CoV-2. Transcriptomics RNA-Seq data derived from 13 human organs are used to analyse expression correlation between identified transcription factors and related target genes in both COVID-19 patients and healthy individuals. This resulted in the identification of transcription factors showing the most relevant impact in terms of most evident differential correlation between COVID-19 patients and healthy individuals. This analysis has also identified five organs such as the blood, heart, lung, nasopharynx and respiratory tract in which a major effect of differential regulation mediated by transcription factors is observed. These organs are also known to be affected by COVID-19, thereby providing consistency to our analysis. Furthermore, 31 key human genes differentially regulated by the transcription factors in the five organs are identified and the corresponding KEGG pathways and GO enrichment are also reported. Finally, the drugs targeting those 31 genes are also put forth. This in silico study explores the effects of transcription factors on human genes interacting with Spike glycoprotein of SARS-CoV-2 and intends to provide new insights to inhibit the virus infection.


Assuntos
COVID-19 , Humanos , COVID-19/genética , SARS-CoV-2 , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Regulação da Expressão Gênica , Glicoproteínas/genética
7.
ACS Omega ; 8(15): 13840-13854, 2023 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-37163139

RESUMO

COVID-19, the disease caused by SARS-CoV-2, has been disrupting our lives for more than two years now. SARS-CoV-2 interacts with human proteins to pave its way into the human body, thereby wreaking havoc. Moreover, the mutating variants of the virus that take place in the SARS-CoV-2 genome are also a cause of concern among the masses. Thus, it is very important to understand human-spike protein-protein interactions (PPIs) in order to predict new PPIs and consequently propose drugs for the human proteins in order to fight the virus and its different mutated variants, with the mutations occurring in the spike protein. This fact motivated us to develop a complete pipeline where PPIs and drug-protein interactions can be predicted for human-SARS-CoV-2 interactions. In this regard, initially interacting data sets are collected from the literature, and noninteracting data sets are subsequently created for human-SARS-CoV-2 by considering only spike glycoprotein. On the other hand, for drug-protein interactions both interacting and noninteracting data sets are considered from DrugBank and ChEMBL databases. Thereafter, a model based on a sequence-based feature is used to code the protein sequences of human and spike proteins using the well-known Moran autocorrelation technique, while the drugs are coded using another well-known technique, viz., PaDEL descriptors, to predict new human-spike PPIs and eventually new drug-protein interactions for the top 20 predicted human proteins interacting with the original spike protein and its different mutated variants like Alpha, Beta, Delta, Gamma, and Omicron. Such predictions are carried out by random forest as it is found to perform better than other predictors, providing an accuracy of 90.53% for human-spike PPI and 96.15% for drug-protein interactions. Finally, 40 unique drugs like eicosapentaenoic acid, doxercalciferol, ciclesonide, dexamethasone, methylprednisolone, etc. are identified that target 32 human proteins like ACACA, DST, DYNC1H1, etc.

8.
ACS Omega ; 7(48): 43589-43602, 2022 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-36506181

RESUMO

Cancer and COVID-19 have killed millions of people worldwide. COVID-19 is even more dangerous to people with comorbidities such as cancer. Thus, it is imperative to identify the key human genes or biomarkers that can be targeted to develop novel prognosis and therapeutic strategies. The transcriptomic data provided by the next-generation sequencing technique makes this identification very convenient. Hence, mRNA (messenger ribonucleic acid) expression data of 2265 cancer and 282 normal patients were considered, while for COVID-19 assessment, 784 and 425 COVID-19 and normal patients were taken, respectively. Initially, volcano plots were used to identify the up- and down-regulated genes for both cancer and COVID-19. Thereafter, protein-protein interaction (PPI) networks were prepared by combining all the up- and down-regulated genes for each of cancer and COVID-19. Subsequently, such networks were analyzed to identify the top 10 genes with the highest degree of connection to provide the biomarkers. Interestingly, these genes were all up-regulated for cancer, while they were down-regulated for COVID-19. This study had also identified common genes between cancer and COVID-19, all of which were up-regulated in both the diseases. This analysis revealed that FN1 was highly up-regulated in different organs for cancer, while EEF2 was dysregulated in most organs affected by COVID-19. Then, functional enrichment analysis was performed to identify significant biological processes. Finally, the drugs for cancer and COVID-19 biomarkers and the common genes between them were identified using the Enrichr online web tool. These drugs include lucanthone, etoposide, and methotrexate, targeting the biomarkers for cancer, while paclitaxel is an important drug for COVID-19.

9.
ACS Omega ; 7(50): 46411-46420, 2022 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-36570256

RESUMO

SARS-CoV-2 poses a great challenge toward mankind, majorly due to its evolution and frequently occurring variants. On the other hand, in human hosts, microRNA (miRNA) plays a vital role in replication and propagation during a viral infection and can control the biological processes. This may be essential for the progression of viral infection. Moreover, human miRNAs can play a therapeutic role in treatment of different viral diseases by binding to the target sites of the virus genome, thereby hindering the essential functioning of the virus. Motivated by this fact, we have hypothesized a new approach in order to identify human miRNAs that can target the mRNA (genome) of SARS-CoV-2 to degrade their protein synthesis. In this regard, the multiple sequence alignment technique Clustal Omega is used to align a complement of 2656 human miRNAs with the SARS-CoV-2 reference genome (mRNA). Thereafter, ranking of these aligned human miRNAs is performed with the help of a new scoring function that takes into account the (a) total number of nucleotide matches between the human miRNA and the SARS-CoV-2 genome, (b) number of consecutive nucleotide matches between the human miRNA and the SARS-CoV-2 genome, (c) number of nucleotide mismatches between the human miRNA and the SARS-CoV-2 genome, and (d) the difference in length before and after alignment of the human miRNA. As a result, from the 2656 ranked miRNAs, the top 20 human miRNAs are reported, which are targeting different coding and non-coding regions of the SARS-CoV-2 genome. Moreover, molecular docking of such human miRNAs with virus mRNA is performed to verify the efficacy of the interactions. Furthermore, 4 miRNAs out of the top 20 miRNAs are identified to have the seed region. In order to inhibit the virus, the key human targets of the seed regions may be targeted. Repurposable drugs like carfilzomib, bortezomib, hydralazine, and paclitaxel are identified for such purpose.

10.
Int Immunopharmacol ; 112: 109224, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36116149

RESUMO

In the worrisome scenarios of various waves of SARS-CoV-2 pandemic, a comprehensive bioinformatics pipeline is essential to analyse the virus genomes in order to understand its evolution, thereby identifying mutations as signature SNPs, conserved regions and subsequently to design epitope based synthetic vaccine. We have thus performed multiple sequence alignment of 4996 Indian SARS-CoV-2 genomes as a case study using MAFFT followed by phylogenetic analysis using Nextstrain to identify virus clades. Furthermore, based on the entropy of each genomic coordinate of the aligned sequences, conserved regions are identified. After refinement of the conserved regions, based on its length, one conserved region is identified for which the primers and probes are reported for virus detection. The refined conserved regions are also used to identify T-cell and B-cell epitopes along with their immunogenic and antigenic scores. Such scores are used for selecting the most immunogenic and antigenic epitopes. By executing this pipeline, 40 unique signature SNPs are identified resulting in 23 non-synonymous signature SNPs which provide 28 amino acid changes in protein. On the other hand, 12 conserved regions are selected based on refinement criteria out of which one is selected as the potential target for virus detection. Additionally, 22 MHC-I and 21 MHC-II restricted T-cell epitopes with 10 unique HLA alleles each and 17 B-cell epitopes are obtained for 12 conserved regions. All the results are validated both quantitatively and qualitatively which show that from genetic variability to synthetic vaccine design, the proposed pipeline can be used effectively to combat SARS-CoV-2.


Assuntos
COVID-19 , Vacinas Virais , Humanos , SARS-CoV-2/genética , Epitopos de Linfócito B , Epitopos de Linfócito T , Vacinas contra COVID-19/genética , Biologia Computacional , Filogenia , COVID-19/prevenção & controle , Imunogenicidade da Vacina , Vacinas Sintéticas/genética , Aminoácidos
12.
ACS Omega ; 7(27): 23069-23074, 2022 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-35847318

RESUMO

The problem of virus classification is always a subject of concern for virology or epidemiology over the decades. In this regard, a machine learning technique can be used to predict the novel coronavirus by considering its sequence. Thus, we are proposing a machine learning-based novel coronavirus prediction technique, called COVID-Predictor, where 1000 sequences of SARS-CoV-1, MERS-CoV, SARS-CoV-2, and other viruses are used to train a Naive Bayes classifier so that it can predict any unknown sequences of these viruses. The model has been validated using 10-fold cross-validation in comparison with other machine learning techniques. The results show the superiority of our predictor by achieving an average 99.7% accuracy on an unseen validation set of viruses. The same pre-trained model has been used to design a web-based application where sequences of unknown viruses can be uploaded to predict the novel coronavirus.

13.
ACS Omega ; 7(24): 21086-21101, 2022 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-35755383

RESUMO

It is two years now but the world is still struggling against COVID-19 due to the havoc created by the SARS-CoV-2 virus and its multiple variants. Considering this perspective, in this work, we have hypothesized a new approach in order to identify potential regions in SARS-CoV-2 similar to the human miRNAs. Thus, they may have similar consequences as caused by the human miRNAs in human body. Therefore, the same way by which human miRNAs are inhibited can be applied for such potential regions of virus as well by administering drugs to the interacting human proteins. In this regard, the multiple sequence alignment technique Clustal Omega is used to align 2656 human miRNAs with the SARS-CoV-2 reference genome to identify the potential regions within the virus reference genome which have high similarities with the human miRNAs. The potential regions in virus genome are identified based on the highest number of nucleotide match, greater than or equal to 5 at a genomic position, for the aligned miRNAs. As a result, 38 potential SARS-CoV-2 regions are identified consisting of 249 human miRNAs. Among these 38 potential regions, some top regions belong to nucleocapsid, RdRp, helicase, and ORF8. To understand the biological significance of these potential regions, the targets of the human miRNAs are considered for KEGG pathways and protein-protein and drug-protein interaction analysis as the human miRNAs are similar to the potential regions of SARS-CoV-2. Significant pathways are found which lead to comorbidities. Subsequently, drugs like emodin, bicalutamide, vorinostat, etc. are identified that may be used for clinical trials.

14.
PLoS One ; 17(3): e0265579, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35344550

RESUMO

The second wave of SARS-CoV-2 has hit India hard and though the vaccination drive has started, moderate number of COVID affected patients is still present in the country, thereby leading to the analysis of the evolving virus strains. In this regard, multiple sequence alignment of 17271 Indian SARS-CoV-2 sequences is performed using MAFFT followed by their phylogenetic analysis using Nextstrain. Subsequently, mutation points as SNPs are identified by Nextstrain. Thereafter, from the aligned sequences temporal and spatial analysis are carried out to identify top 10 hotspot mutations in the coding regions based on entropy. Finally, to judge the functional characteristics of all the non-synonymous hotspot mutations, their changes in proteins are evaluated as biological functions considering the sequences by using PolyPhen-2 while I-Mutant 2.0 evaluates their structural stability. For both temporal and spatial analysis, there are 21 non-synonymous hotspot mutations which are unstable and damaging.


Assuntos
COVID-19/epidemiologia , Hotspot de Doença , Genoma Viral/genética , Mutação/genética , SARS-CoV-2/genética , COVID-19/virologia , Humanos , Índia/epidemiologia , Filogenia , Análise Espaço-Temporal
15.
Int Immunopharmacol ; 105: 108565, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35123183

RESUMO

Since the inception of SARS-CoV-2 in December 2019, many variants have emerged over time. Some of these variants have resulted in transmissibility changes of the virus and may also have impact on diagnosis, therapeutics and even vaccines, thereby raising particular concerns in the scientific community. The variants which have mutations in Spike glycoprotein are the primary focus as it is the main target for neutralising antibodies. SARS-CoV-2 is known to infect human through Spike glycoprotein and uses receptor-binding domain (RBD) to bind to the ACE2 receptor in human. Thus, it is of utmost importance to study these variants and their corresponding mutations. Such 12 different important variants identified so far are B.1.1.7 (Alpha), B.1.351 (Beta), B.1.525 (Eta), B.1.427/B.1.429 (Epsilon), B.1.526 (Iota), B.1.617.1 (Kappa), B.1.617.2 (Delta), C.37 (Lambda), P.1 (Gamma), P.2 (Zeta), P.3 (Theta) and the recently discovered B.1.1.529 (Omicron). These variants have 84 unique mutations in Spike glycoprotein. To analyse such mutations, multiple sequence alignment of 77681 SARS-CoV-2 genomes of 98 countries over the period from January 2020 to July 2021 is performed followed by phylogenetic analysis. Also, characteristics of new emerging variants are elaborately discussed. The individual evolution of these mutation points and the respective variants are visualised and their characteristics are also reported. Moreover, to judge the characteristics of the non-synonymous mutation points (substitutions), their biological functions are evaluated by PolyPhen-2 while protein structural stability is evaluated using I-Mutant 2.0.


Assuntos
SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética , Evolução Molecular , Genoma Viral , Humanos , Mutação
16.
Gene ; 818: 146136, 2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-34999179

RESUMO

Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) associated Cas protein (CRISPR-Cas) has turned out to be a very important tool for the rapid detection of viruses. This can be used for the identification of the target site in a virus by identifying a 3-6 nt length Protospacer Adjacent Motif (PAM) adjacent to the potential target site, thus motivating us to adopt CRISPR-Cas technique to identify SARS-CoV-2 as well as other members of Coronaviridae family. In this regard, we have developed a fast and effective method using k-mer technique in order to identify the PAM by scanning the whole genome of the respective virus. Subsequently, palindromic sequences adjacent to the PAM locations are identified as the potential target sites. Palindromes are considered in this work as they are known to identify viruses. Once all the palindrome-PAM combinations are identified, PAMs specific for the RNA-guided DNA Cas9/Cas12 endonuclease are identified to bind and cut the target sites. In this regard, PAMs such as 5'-TGG-3' and 5'-TTTA-3' in NSP3 and Exon for SARS-CoV-2, 5'-GGG-3' and 5'-TGG-3' in Exon and NSP2 for MERS-CoV and 5'-AGG-3' and 5'-TTTG-3' in Helicase and NSP3 respectively for SARS-CoV-1 are identified corresponding to SpCas9 and FnCas12a endonucleases. Finally, to recognise the target sites of Coronaviridae family as cleaved by SpCas9 and FnCas12a, complements of the palindromic target regions are designed as primers or guide RNA (gRNA). Therefore, such complementary gRNAs along with respective Cas proteins can be considered in assays for the identification of SARS-CoV-2, MERS-CoV and SARS-CoV-1.


Assuntos
Sistemas CRISPR-Cas/genética , Sequências Repetidas Invertidas/genética , Coronavírus da Síndrome Respiratória do Oriente Médio/genética , SARS-CoV-2/genética , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/genética , Sequência de Bases , Proteína 9 Associada à CRISPR/metabolismo , Edição de Genes , Humanos
17.
Methods ; 203: 282-296, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-34547443

RESUMO

Since the emergence of SARS-CoV-2 in Wuhan, China more than a year ago, it has spread across the world in a very short span of time. Although, different forms of vaccines are being rolled out for vaccination programs around the globe, the mutation of the virus is still a cause of concern among the research communities. Hence, it is important to study the constantly evolving virus and its strains in order to provide a much more stable form of cure. This fact motivated us to conduct this research where we have initially carried out multiple sequence alignment of 15359 and 3033 global dataset without Indian and the dataset of exclusive Indian SARS-CoV-2 genomes respectively, using MAFFT. Subsequently, phylogenetic analyses are performed using Nextstrain to identify virus clades. Consequently, the virus strains are found to be distributed among 5 major clades or clusters viz. 19A, 19B, 20A, 20B and 20C. Thereafter, mutation points as SNPs are identified in each clade. Henceforth, from each clade top 10 signature SNPs are identified based on their frequency i.e. number of occurrences in the virus genome. As a result, 50 such signature SNPs are individually identified for global dataset without Indian and dataset of exclusive Indian SARS-CoV-2 genomes respectively. Out of each 50 signature SNPs, 39 and 41 unique SNPs are identified among which 25 non-synonymous signature SNPs (out of 39) resulted in 30 amino acid changes in protein while 27 changes in amino acid are identified from 22 non-synonymous signature SNPs (out of 41). These 30 and 27 amino acid changes for the non-synonymous signature SNPs are visualised in their respective protein structure as well. Finally, in order to judge the characteristics of the identified clades, the non-synonymous signature SNPs are considered to evaluate the changes in proteins as biological functions with the sequences using PROVEAN and PolyPhen-2 while I-Mutant 2.0 is used to evaluate their structural stability. As a consequence, for global dataset without Indian sequences, G251V in ORF3a in clade 19A, F308Y and G196V in NSP4 and ORF3a in 19B are the unique amino acid changes which are responsible for defining each clade as they are all deleterious and unstable. Such changes which are common for both global dataset without Indian and dataset of exclusive Indian sequences are R203M in Nucleocapsid for 20B, T85I and Q57H in NSP2 and ORF3a respectively for 20C while for exclusive Indian sequences such unique changes are A97V in RdRp, G339S and G339C in NSP2 in 19A and Q57H in ORF3a in 20A.


Assuntos
COVID-19 , SARS-CoV-2 , Aminoácidos , COVID-19/epidemiologia , COVID-19/genética , Genoma Viral , Humanos , Mutação , Filogenia , Polimorfismo de Nucleotídeo Único , SARS-CoV-2/genética
18.
Infect Genet Evol ; 97: 105154, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34808395

RESUMO

The pandemic of COVID-19 has been haunting us for almost the past two years. Although, the vaccination drive is in full swing throughout the world, different mutations of the SARS-CoV-2 virus are making it very difficult to put an end to the pandemic. The second wave in India, one of the worst sufferers of this pandemic, can be mainly attributed to the Delta variant i.e. B.1.617.2. Thus, it is very important to analyse and understand the mutational trajectory of SARS-CoV-2 through the study of the 26 virus proteins. In this regard, more than 17,000 protein sequences of Indian SARS-CoV-2 genomes are analysed using entropy-based approach in order to find the monthly mutational trajectory. Furthermore, Hellinger distance is also used to show the difference of the mutation events between the consecutive months for each of the 26 SARS-CoV-2 protein. The results show that the mutation rates and the mutation events of the viral proteins though changing in the initial months, start stabilizing later on for mainly the four structural proteins while the non-structural proteins mostly exhibit a more constant trend. As a consequence, it can be inferred that the evolution of the new mutative configurations will eventually reduce.


Assuntos
COVID-19/epidemiologia , Genoma Viral , Taxa de Mutação , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética , Proteínas não Estruturais Virais/genética , Proteínas Estruturais Virais/genética , COVID-19/virologia , Entropia , Monitoramento Epidemiológico , Evolução Molecular , Expressão Gênica , Humanos , Índia/epidemiologia , Filogenia , SARS-CoV-2/classificação , SARS-CoV-2/patogenicidade , Glicoproteína da Espícula de Coronavírus/metabolismo , Proteínas não Estruturais Virais/classificação , Proteínas não Estruturais Virais/metabolismo , Proteínas Estruturais Virais/classificação , Proteínas Estruturais Virais/metabolismo
19.
Ann Oper Res ; : 1-51, 2022 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-36591407

RESUMO

We consider a large random network, in which the performance of a node depends upon that of its neighbours and some external random influence factors. This results in random vector valued fixed-point (FP) equations in large dimensional spaces, and our aim is to study their almost-sure solutions. An underlying directed random graph defines the connections between various components of the FP equations. Existence of an edge between nodes i, j implies the i-th FP equation depends on the j-th component. We consider a special case where any component of the FP equation depends upon an appropriate aggregate of that of the random 'neighbour' components. We obtain finite dimensional limit FP equations in a much smaller dimensional space, whose solutions aid to approximate the solution of FP equations for almost all realizations, as the number of nodes increases. We use Maximum theorem for non-compact sets to prove this convergence.We apply the results to study systemic risk in an example financial network with large number of heterogeneous entities. We utilized the simplified limit system to analyse trends of default probability (probability that an entity fails to clear its liabilities) and expected surplus (expected-revenue after clearing liabilities) with varying degrees of interconnections between two diverse groups. We illustrated the accuracy of the approximation using exhaustive Monte-Carlo simulations.Our approach can be utilized for a variety of financial networks (and others); the developed methodology provides approximate small-dimensional solutions to large-dimensional FP equations that represent the clearing vectors in case of financial networks.

20.
Front Genet ; 12: 753440, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34912372

RESUMO

Since its emergence in Wuhan, China, severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has spread very rapidly around the world, resulting in a global pandemic. Though the vaccination process has started, the number of COVID-affected patients is still quite large. Hence, an analysis of hotspot mutations of the different evolving virus strains needs to be carried out. In this regard, multiple sequence alignment of 71,038 SARS-CoV-2 genomes of 98 countries over the period from January 2020 to June 2021 is performed using MAFFT followed by phylogenetic analysis in order to visualize the virus evolution. These steps resulted in the identification of hotspot mutations as deletions and substitutions in the coding regions based on entropy greater than or equal to 0.3, leading to a total of 45 unique hotspot mutations. Moreover, 10,286 Indian sequences are considered from 71,038 global SARS-CoV-2 sequences as a demonstrative example that gives 52 unique hotspot mutations. Furthermore, the evolution of the hotspot mutations along with the mutations in variants of concern is visualized, and their characteristics are discussed as well. Also, for all the non-synonymous substitutions (missense mutations), the functional consequences of amino acid changes in the respective protein structures are calculated using PolyPhen-2 and I-Mutant 2.0. In addition to this, SSIPe is used to report the binding affinity between the receptor-binding domain of Spike protein and human ACE2 protein by considering L452R, T478K, E484Q, and N501Y hotspot mutations in that region.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...