Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Bio Mater ; 6(9): 3848-3862, 2023 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-37647161

RESUMO

A one-head-two-tail cationic surfactant, Dilauryldimethylammonium bromide (DDAB) has shown a great extent of calf thymus DNA (ct-DNA) compaction being adsorbed on the surfaces of negatively charged SiO2 nanoparticles (NPs). DDAB molecules show high adsorption efficiency and induce many positive surface charges per-unit surface area of the SiO2 NPs compared to cationic Gemini (12-6-12) and conventional (DTAB) surfactants in an aqueous medium at pH 7.4, as evident from zeta potential and EDAX data. Transmission electron microscopy and field emission scanning electron microscopy images, along with ethidium bromide exclusion assay and DLS data support the compaction of ct-DNA. Fluorescence microscopic images show that in the presence of SiO2 NPs, DDAB can perform 50% compaction of ct-DNA at a concentration ∼58% and ∼99% lower than that of 12-6-12 and DTAB, respectively. Better ct-DNA compaction by DDAB is evident compared to other Gemini surfactants (12-4-12 and 12-8-12) as well reported before. Time-correlated single photon counting fluorescence intensity decay measurements of a probe DAPI in ct-DNA have revealed the average lifetime value that is decreased by ∼61% at 2.5 µM of DDAB in the presence of SiO2 NPs as compared to a decrease by only ∼29% in its absence, supporting NPs-induced stronger surfactant binding with ct-DNA. Fluorescence lifetime data have also demonstrated the crowding effect of NPs. At 2.5 µM of DDAB, both fast and slow rotational relaxation components of DAPI contribute almost equally to depolarization with the absence of NPs; however, with the presence of NPs, ∼96% weightage of the anisotropy decay is for the fast component. The present DDAB-SiO2 NPs combination has proved to be an excellent gene delivery system based on the cell viability in the mouse mammary gland adenocarcinoma cells (4T1) and human embryonic kidney (HEK) 293 cell lines, and in vitro and in vivo studies.


Assuntos
Nanoestruturas , Tensoativos , Animais , Camundongos , Humanos , Tensoativos/farmacologia , Células HEK293 , Dióxido de Silício/farmacologia , DNA , Técnicas de Transferência de Genes
2.
RSC Adv ; 11(3): 1679-1693, 2021 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-35424090

RESUMO

The present study demonstrates binding interactions and Förster resonance energy transfer (FRET) between bovine serum albumin (BSA) and a series of structurally and electronically diverse phenothiazine (PTZ) and anthracene (ANT) dyes. Upon selective excitation of tryptophan (Trp) residues of BSA, radiationless energy transfer to a dye takes place, resulting in fluorescence quenching of the former. Fluorescence quenching mechanisms, FRET parameters, possible locations, and binding constants of dyes with the BSA have been examined to deduce a structure-property relationship. The mechanism of quenching is apparently static in nature. PTZ dyes with heteroatoms and a pentyl tail (C5-PTZ) attached to them were found to have a stronger binding affinity with BSA as compared to ANT dyes. Stronger binding affinities of C5-PTZ dyes with BSA result in greater energy transfer efficiencies (E T). A dye with a strong electron-withdrawing group present in it has shown better energy accepting capability. A FRET study with dicyanoaniline (DCA) analogs of PTZ and ANT dyes (C5-PTZDCA and ANTDCA, respectively) revealed that E T depends on electronic and structural factors of molecules. An almost orthogonal geometry between ANT and DCA moieties (∼79°) in ANTDCA induces the greater extent of electron transfer from ANT to DCA, showing a higher E T for this dye as compared to C5-PTZDCA in which the torsion angle is only ∼38°. Further, the observed facts have been validated by experimentally determined bandgaps (using cyclic voltammetry experiments) for all the dyes. Thus, the hydrophobic character and the presence of interactive substituents along with the electron-accepting abilities majorly control the FRET for such dyes with BSA.

3.
ACS Omega ; 5(12): 6738-6753, 2020 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-32258909

RESUMO

The present study demonstrates how the different states of solubilized water viz. quaternary ammonium headgroup-bound, bulklike, counterion-bound, and free water in reverse micelles of a series of cationic gemini surfactants, water/12-s-12 (s = 5, 6, 8).2Br-/n-propanol/cyclohexane, control the solvation dynamics and rotational relaxation of Coumarin 490 (C-490) and microenvironment of the reverse micelles. The relative number of solubilized water molecules of a given state per surfactant molecule decides major and minor components. A rapid increase in the number of bulklike water molecules per surfactant molecule as compared to the slow increase in the number of each of headgroup- and counterion-bound water molecules per surfactant molecule with increasing water content (W o) in a given reverse micellar system is responsible for the increase in the rate of solvation and rotational relaxation of C-490. The increase in the number of counterion-bound water molecules per surfactant molecule and the concomitant decrease in the number of bulklike water molecules per surfactant molecule with increasing spacer chain length of gemini surfactants at a given W o are ascribed to the slower rates of both solvation and rotational relaxation. Relative abundances of different states of water have a role on the microenvironment of the reverse micelles as well. Thus, a comprehensive effect of different states of water on dynamics in complex biomimicking systems has been presented here.

4.
J Colloid Interface Sci ; 445: 76-83, 2015 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-25596371

RESUMO

In the present study, we report the synthesis of gold (Au), silver (Ag), and gold-silver alloy (Au-Ag) nanoparticles (NPs) by seed-mediated method using gemini surfactant, containing diethyl ether spacer group as a stabilizer. As-synthesized NPs are found very much stable and have been characterized using UV-vis spectroscopy, X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), energy dispersive spectroscopy (EDS), and zeta potential techniques. The orientation of gemini surfactant molecules surrounding the metal NPs has been investigated exploiting twisted intramolecular charge transfer (TICT) fluorescence properties of a probe 4-(N,N-dimethylamino) cinnamaldehyde (DMACA). The quenching efficiencies of different NPs have been performed in the fluorescence of DMACA and are found to be different. This effect can be related to the location of DMACA as well as the electro-negativity of the metals as the extent of orientation of the surfactant molecules around NPs controls the location of DMACA in a bilayer. To support the location of DMACA, fluorescence quenching studies with cetylpyridinium chloride (CPC) as an external quencher have also been carried out.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...