Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochem Biophys Res Commun ; 684: 149134, 2023 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-37871521

RESUMO

Post-translational modification (PTM) is important in controlling many biological processes by changing the structure and function of a protein. Protein methylation is an important PTM, and the role of methyltransferases has been implicated in numerous cellular functions. Protein L-isoaspartyl methyltransferase (PIMT) is ubiquitously expressed in almost all organisms and govern important cellular processes including apoptosis. Among other functions, PIMT has also been identified as a potent oncogene because it destabilizes the structure of the tumor suppressor p53 via methylation at the transactivation domain. In the present study we identified that out of the three methyltransferase inhibitors tested, namely, S-adenosyl-l-homocysteine (AdoHcy), adenosine and adenosine dialdehyde (AdOx), only AdOx augments p53 expression by destabilizing PIMT structure, as evident from far-UV CD. The effect of the inhibitors, AdOx in particular, to the structure of PIMT, and the binding of PIMT to the p53 transactivation domain have been investigated by docking and molecular dynamics simulations. AdOx significantly increases p53 accumulation and nuclear translocation in colon cancer cells, triggering the p53-mediated apoptotic pathway. To better understand the molecular mechanisms underlying p53 accumulation in colon cancer cells, we observed that the level of PIMT is considerably lower in AdOx-treated cells, reducing its association with p53, which stabilized p53. p53 then transactivated BAX, increasing the BAX: BCL-2 ratio and causing colon cancer cell death.


Assuntos
Neoplasias do Colo , Neoplasias Colorretais , Humanos , Proteína D-Aspartato-L-Isoaspartato Metiltransferase/metabolismo , Proteína D-Aspartato-L-Isoaspartato Metiltransferase/farmacologia , Proteína X Associada a bcl-2/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Adenosina/farmacologia , Apoptose , Metiltransferases/metabolismo
2.
Radiother Oncol ; 186: 109741, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37315577

RESUMO

BACKGROUND AND PURPOSE: Proton radiotherapy (PRT) offers potential benefits over other radiation modalities, including photon and electron radiotherapy. Increasing the rate at which proton radiation is delivered may provide a therapeutic advantage. Here, we compared the efficacy of conventional proton therapy (CONVpr) to ultrahigh dose-rate proton therapy, FLASHpr, in a mouse model of non-small cell lung cancers (NSCLC). MATERIALS AND METHODS: Mice bearing orthotopic lung tumors received thoracic radiation therapy using CONVpr (<0.05 Gy/s) and FLASHpr (>60 Gy/s) dose rates. RESULTS: Compared to CONVpr, FLASHpr was more effective in reducing tumor burden and decreasing tumor cell proliferation. Furthermore, FLASHpr was more efficient in increasing the infiltration of cytotoxic CD8+ T-lymphocytes inside the tumor while simultaneously reducing the percentage of immunosuppressive regulatory T-cells (Tregs) among T-lymphocytes. Also, compared to CONVpr, FLASHpr was more effective in decreasing pro-tumorigenic M2-like macrophages in lung tumors, while increasing infiltration of anti-tumor M1-like macrophages. Finally, FLASHpr treatment reduced expression of checkpoint inhibitors in lung tumors, indicating reduced immune tolerance. CONCLUSIONS: Our results suggest that FLASH dose-rate proton delivery modulates the immune system to improve tumor control and might thus be a promising new alternative to conventional dose rates for NSCLC treatment.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Terapia com Prótons , Animais , Camundongos , Prótons , Dosagem Radioterapêutica , Neoplasias Pulmonares/radioterapia , Terapia com Prótons/métodos , Carcinoma Pulmonar de Células não Pequenas/radioterapia
3.
Front Oncol ; 12: 856974, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35392236

RESUMO

Breast cancer is the most frequent type of malignancy in women worldwide, and drug resistance to the available systemic therapies remains a major challenge. At the molecular level, breast cancer is heterogeneous, where the cancer-initiating stem-like cells (bCSCs) comprise a small yet distinct population of cells within the tumor microenvironment (TME) that can differentiate into cells of multiple lineages, displaying varying degrees of cellular differentiation, enhanced metastatic potential, invasiveness, and resistance to radio- and chemotherapy. Based on the expression of estrogen and progesterone hormone receptors, expression of human epidermal growth factor receptor 2 (HER2), and/or BRCA mutations, the breast cancer molecular subtypes are identified as TNBC, HER2 enriched, luminal A, and luminal B. Management of breast cancer primarily involves resection of the tumor, followed by radiotherapy, and systemic therapies including endocrine therapies for hormone-responsive breast cancers; HER2-targeted therapy for HER2-enriched breast cancers; chemotherapy and poly (ADP-ribose) polymerase inhibitors for TNBC, and the recent development of immunotherapy. However, the complex crosstalk between the malignant cells and stromal cells in the breast TME, rewiring of the many different signaling networks, and bCSC-mediated processes, all contribute to overall drug resistance in breast cancer. However, strategically targeting bCSCs to reverse chemoresistance and increase drug sensitivity is an underexplored stream in breast cancer research. The recent identification of dysregulated miRNAs/ncRNAs/mRNAs signatures in bCSCs and their crosstalk with many cellular signaling pathways has uncovered promising molecular leads to be used as potential therapeutic targets in drug-resistant situations. Moreover, therapies that can induce alternate forms of regulated cell death including ferroptosis, pyroptosis, and immunotherapy; drugs targeting bCSC metabolism; and nanoparticle therapy are the upcoming approaches to target the bCSCs overcome drug resistance. Thus, individualizing treatment strategies will eliminate the minimal residual disease, resulting in better pathological and complete response in drug-resistant scenarios. This review summarizes basic understanding of breast cancer subtypes, concept of bCSCs, molecular basis of drug resistance, dysregulated miRNAs/ncRNAs patterns in bCSCs, and future perspective of developing anticancer therapeutics to address breast cancer drug resistance.

5.
Apoptosis ; 24(11-12): 958-971, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31641961

RESUMO

Anoikis resistance is an essential property of cancer cells that allow the extra-cellular matrix-detached cells to survive in a suspended state in body fluid in order to metastasize and invade to distant organs. It is known that integrins play an important role in anoikis resistance, but detailed mechanisms are not well understood. Here we report that highly metastatic colon cancer cells showed a higher degree of anoikis resistance than the normal intestinal epithelial cells. These anoikis-resistant cancer cells express high-levels of integrin-α2, ß1, and activated EGFR in the anchorage-independent state than the anchorage-dependent state. In contrast, normal intestinal epithelial cells failed to elevate these proteins. Interestingly, a higher co-association of EGFR with integrin-α2ß1/-α5ß1 was observed on the surface of anoikis-resistant cells. Thus, in the absence of extra-cellular matrix, integrins in association with EGFR activates downstream effectors ERK and AKT and suppress Caspase-3 activation to induce anoikis resistance as was confirmed from the gene-ablation and pharmacological inhibitor studies. Interestingly, these anoikis-resistant cancer cells express high-level of cancer stem cell signatures (CD24, CD44, CD133, EpCAM) and pluripotent stem cell markers (OCT-4, SOX-2, Nanog) as well as drug-resistant pumps (ABCG2, MDR1, MRP1). Altogether, our findings unravel the interplay between integrin-α2ß1/-α5ß1 and EGFR in anoikis resistance and suggest that the resistant cells are cancer initiating or cancer stem cells, which may serve as a promising target to combat metastasis of cancer.


Assuntos
Anoikis , Neoplasias do Colo/metabolismo , Integrina alfa2beta1/metabolismo , Células-Tronco Neoplásicas/metabolismo , Antígeno AC133/metabolismo , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Anoikis/genética , Antígeno CD24/metabolismo , Linhagem Celular Tumoral , Neoplasias do Colo/genética , Células Epiteliais/metabolismo , Receptores ErbB/genética , Receptores ErbB/metabolismo , Humanos , Receptores de Hialuronatos/metabolismo , Integrina alfa2beta1/genética , Sistema de Sinalização das MAP Quinases/genética , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Proteína Homeobox Nanog/metabolismo , Proteínas de Neoplasias/metabolismo , Fator 3 de Transcrição de Octâmero/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fatores de Transcrição SOXB1/metabolismo
6.
Chembiochem ; 19(7): 723-735, 2018 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-29363254

RESUMO

One of the crucial regulators of embryonic patterning and tissue development is the Hedgehog-glioma (Hh-Gli) signalling pathway; its uncontrolled activation has been implicated in different types of cancer in adult tissues. Primary cilium is one of the important factors required for the activation of Hh signalling, as it brings the critical components together for key protein-protein interactions required for Hh pathway regulation. Most of the synthetic and natural small molecule modulators of the pathway primarily antagonise Smoothened (Smo) or other effectors like Hh ligand or Gli. Here, we report a previously described Hh antagonist, with a pyrimidine-indole hybrid (PIH) core structure, as an inhibitor of ciliogenesis. The compound is unique in its mode of action, as it shows perturbation of microtubule dynamics in both cell-based assays and in vivo systems (zebrafish embryos). Further studies revealed that the probable targets are α-tubulin and its acetylated form, found in the cytoplasm and primary cilia. PIH also showed axonal defasiculation in developing zebrafish embryos. We thus propose that PIH antagonises Hh signalling by repressing cilia biogenesis and disassembling α-tubulin from its stabilised form.


Assuntos
Cílios/efeitos dos fármacos , Proteínas Hedgehog/antagonistas & inibidores , Indóis/farmacologia , Microtúbulos/efeitos dos fármacos , Pirimidinas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Animais , Células CHO , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Cricetulus , Humanos , Indóis/síntese química , Camundongos , Simulação de Acoplamento Molecular , Células NIH 3T3 , Pirimidinas/síntese química , Suínos , Tubulina (Proteína)/metabolismo , Peixe-Zebra
7.
Sci Rep ; 6: 32626, 2016 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-27601274

RESUMO

p53 preserves genomic integrity by restricting anomaly at the gene level. Till date, limited information is available for cytosol to nuclear shuttling of p53; except microtubule-based trafficking route, which utilizes minus-end directed motor dynein. The present study suggests that monomeric actin (G-actin) guides p53 traffic towards the nucleus. Histidine-tag pull-down assay using purified p53(1-393)-His and G-actin confirms direct physical association between p53 and monomeric G-actin. Co-immunoprecipitation data supports the same. Confocal imaging explores intense perinuclear colocalization between p53 and G-actin. To address atomistic details of the complex, constraint-based docked model of p53:G-actin complex was generated based on crystal structures. MD simulation reveals that p53 DNA-binding domain arrests very well the G-actin protein. Docking benchmark studies have been carried out for a known crystal structure, 1YCS (complex between p53DBD and BP2), which validates the docking protocol we adopted. Co-immunoprecipitation study using "hot-spot" p53 mutants suggested reduced G-actin association with cancer-associated p53 conformational mutants (R175H and R249S). Considering these findings, we hypothesized that point mutation in p53 structure, which diminishes p53:G-actin complexation results in mutant p53 altered subcellular localization. Our model suggests p53Arg249 form polar-contact with Arg357 of G-actin, which upon mutation, destabilizes p53:G-actin interaction and results in cytoplasmic retention of p53R249S.


Assuntos
Actinas/metabolismo , Núcleo Celular/metabolismo , Proteínas Mutantes/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Animais , Linhagem Celular Tumoral , Reagentes de Ligações Cruzadas/metabolismo , Doxorrubicina/farmacologia , Simulação de Dinâmica Molecular , Polimerização/efeitos dos fármacos , Ligação Proteica/efeitos dos fármacos , Multimerização Proteica/efeitos dos fármacos , Transporte Proteico/efeitos dos fármacos , Coelhos , Frações Subcelulares/metabolismo
8.
Prog Biophys Mol Biol ; 117(2-3): 250-263, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25550083

RESUMO

Approximately 27 million people are suffering from cancer that contains either an inactivating missense mutation of TP53 gene or partially abrogated p53 signaling pathway. Concerted action of folded and intrinsically disordered domains accounts for multi-faceted role of p53. The intricacy of dynamic p53 structure is believed to shed light on its cellular activity for developing new cancer therapies. In this review, insights into structural details of p53, diverse single point mutations affecting its core domain, thermodynamic understanding and therapeutic strategies for pharmacological rescue of p53 function has been illustrated. An effort has been made here to bridge the structural and sequential evidence of p53 from experimental to computational studies. First, we focused on the individual domains and the crucial protein-protein or DNA-protein contacts that determine conformation and dynamic behavior of p53. Next, the oncogenic mutations associated with cancer and its contribution to thermodynamic fluctuation has been discussed. Thus the emerging anti-cancer strategies include targeting of destabilized cancer mutants with selective inhibition of its negative regulators. Recent advances in development of small molecule inhibitors and peptides exploiting p53-MDM2 interaction has been included. In a nutshell, this review attempts to describe structural biology of p53 which provide new openings for structure-guided rescue.


Assuntos
DNA/química , DNA/ultraestrutura , Proteínas Proto-Oncogênicas c-mdm2/química , Proteínas Proto-Oncogênicas c-mdm2/ultraestrutura , Proteína Supressora de Tumor p53/química , Proteína Supressora de Tumor p53/ultraestrutura , Sequência de Aminoácidos , Animais , Sítios de Ligação , Simulação por Computador , DNA/genética , Humanos , Modelos Químicos , Simulação de Dinâmica Molecular , Dados de Sequência Molecular , Mutação , Ligação Proteica , Conformação Proteica , Proteínas Proto-Oncogênicas c-mdm2/genética , Relação Estrutura-Atividade , Proteína Supressora de Tumor p53/genética
9.
Immunity ; 39(6): 1057-69, 2013 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-24315995

RESUMO

This article has been retracted: please see Elsevier Policy on Article Withdrawal (http://www.elsevier.com/locate/withdrawalpolicy). This article has been retracted at the request of the authors. This study provided an explanation for why loss of FoxP3 in inducible regulatory T cells results in reduced expression of interleukin (IL)-10 despite the absence of FoxP3 binding sites in the IL-10 promoter. STAT3 binding sites do exist in the promoter, and evidence for a direct molecular interaction between FoxP3 and STAT3 proteins was provided as an explanation of the effect of loss of FoxP3. As supporting evidence, we reported modeling of a structural interaction between these two transcription factors in Figure 4D. As the N-terminal region of FoxP3, which consists of the Exon-2 region, had not been solved at structural resolution, we mistakenly used what we deduced to be a FoxP3 related transcription factor, NFAT, in the modeling. The model depicted in Figure 4D therefore did not represent a putative interaction between FoxP3 and STAT3 as labeled, but rather a putative interaction between NFAT and STAT3. Given the incorrect labeling of Figure 4D, the lack of documentation in the paper describing exactly how the modeling was performed, the lack of evidence shown in the paper for the choice of NFAT as the modeling partner, and the limited supporting evidence for a cooperative interaction between FoxP3 and STAT3, the editors have concluded with the corresponding author that the appropriate course of action is to retract the paper. We apologize for any confusion and inconvenience caused to readers.


Assuntos
Neoplasias da Mama/fisiopatologia , Fatores de Transcrição Forkhead/metabolismo , Regulação Neoplásica da Expressão Gênica , Fator de Transcrição STAT3/metabolismo , Linfócitos T Reguladores/metabolismo , Linhagem Celular Tumoral , Feminino , Humanos , Modelos Moleculares , Fatores de Transcrição
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...