Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Hypertens ; 2024: 2430147, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38410720

RESUMO

The lipid-based drug delivery system (LBDDS) is a well-established technique that is anticipated to bring about comprehensive transformations in the pharmaceutical field, impacting the management and administration of drugs, as well as treatment and diagnosis. Various LBDDSs verified to be an efficacious mechanism for monitoring hypertension systems are SEDDS (self-nano emulsifying drug delivery), nanoemulsion, microemulsions, vesicular systems (transferosomes and liposomes), and solid lipid nanoparticles. LBDDSs overcome the shortcomings that are associated with antihypertensive agents because around fifty percent of the antihypertensive agents experience a few drawbacks including short half-life because of hepatic first-pass metabolism, poor aqueous solubility, low permeation rate, and undesirable side effects. This review emphasizes antihypertensive agents that were encapsulated into the lipid carrier to improve their poor oral bioavailability. Incorporating cutting-edge technologies such as nanotechnology and targeted drug delivery, LBDDS holds promise in addressing the multifactorial nature of hypertension. By fine-tuning drug release profiles and enhancing drug uptake at specific sites, LBDDS can potentially target renin-angiotensin-aldosterone system components, sympathetic nervous system pathways, and endothelial dysfunction, all of which play crucial roles in hypertension pathophysiology. The future of hypertension management using LBDDS is promising, with ongoing reviews focusing on precision medicine approaches, improved biocompatibility, and reduced toxicity. As we delve deeper into understanding the intricate mechanisms underlying hypertension, LBDDS offers a pathway to develop next-generation antihypertensive therapies that are safer, more effective, and tailored to individual patient needs.

2.
Saudi Pharm J ; 31(12): 101870, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38053738

RESUMO

This review aims to provide a thorough examination of the benefits, challenges, and advancements in utilizing lipids for more effective drug delivery, ultimately contributing to the development of innovative approaches in pharmaceutical science. Lipophilic drugs, characterized by low aqueous solubility, present a formidable challenge in achieving effective delivery and absorption within the human body. To address this issue, one promising approach involves harnessing the potential of lipids. Lipids, in their diverse forms, serve as carriers, leveraging their unique capacity to enhance solubility, stability, and absorption of these challenging drugs. By facilitating improved intestinal solubility and selective lymphatic absorption of porously permeable drugs, lipids offer an array of possibilities for drug delivery. This versatile characteristic not only bolsters the pharmacological efficacy of drugs with low bioavailability but also contributes to enhanced therapeutic performance, ultimately reducing the required dose size and associated costs. This comprehensive review delves into the strategic formulation approaches that employ lipids as carriers to ameliorate drug solubility and bioavailability. Emphasis is placed on the critical considerations of lipid type, composition, and processing techniques when designing lipid-based formulations. This review meticulously examines the multifaceted challenges that come hand in hand with lipid-based formulations for lipophilic drugs, offering an insightful perspective on future trends. Regulatory considerations and the broad spectrum of potential applications are also thoughtfully discussed. In summary, this review presents a valuable repository of insights into the effective utilization of lipids as carriers, all aimed at elevating the bioavailability of lipophilic drugs.

3.
Scientifica (Cairo) ; 2023: 6640103, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37928749

RESUMO

The pharmaceutical sector has made considerable strides recently, emphasizing improving drug delivery methods to increase the bioavailability of various drugs. When used as a medication delivery method, nanoemulsions have multiple benefits. Their small droplet size, which is generally between 20 and 200 nanometers, creates a significant interfacial area for drug dissolution, improving the solubility and bioavailability of drugs that are weakly water-soluble. Additionally, nanoemulsions are a flexible platform for drug administration across various therapeutic areas since they can encapsulate hydrophilic and hydrophobic medicines. Nanoemulsion can be formulated in multiple dosage forms, for example, gels, creams, foams, aerosols, and sprays by using low-cost standard operative processes and also be taken orally, topically, topically, intravenously, intrapulmonary, intranasally, and intraocularly. The article explores nanoemulsion formulation and production methods, emphasizing the role of surfactants and cosurfactants in creating stable formulations. In order to customize nanoemulsions to particular medication delivery requirements, the choice of components and production techniques is crucial in assuring the stability and efficacy of the finished product. Nanoemulsions are a cutting-edge technology with a lot of potential for improving medication bioavailability in a variety of therapeutic contexts. They are a useful tool in the creation of innovative pharmaceutical formulations due to their capacity to enhance drug solubility, stability, and delivery. Nanoemulsions are positioned to play a crucial role in boosting medication delivery and enhancing patient outcomes as this field of study continues to advance.

4.
Pharm Nanotechnol ; 2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37818559

RESUMO

BACKGROUND: It is estimated that there are over 200 million people living with diabetes mellitus (DM) all over the world. It is a metabolic condition caused by decreased insulin action or secretion. Diabetes Mellitus is also known as Type 2 Diabetes Mellitus. Type 1 diabetes mellitus and type 2 diabetes mellitus are the two most common types of DM. Treatment for type 1 diabetes often consists of insulin replacement therapy, while treatment for type 2 diabetes typically consists of oral hypoglycemics. OBJECTIVE: Conventional dosing schedules for the vast majority of these medications come with a number of drawbacks, the most common of which are frequent dosing, a short half-life, and low bioavailability. Thus, innovative and regulated oral hypoglycemic medication delivery methods have been developed to reduce the limitations of standard dose forms. METHODS: The studies and reviews published under the title were looked up in several databases (including PubMed, Elsevier, and Google Scholar). RESULTS: Hydrogels made from biopolymers are three-dimensional polymeric networks that can be physically or chemically crosslinked. These networks are based on natural polymers and have an inherent hydrophilic quality because of the functional groups they contain. They have a very high affinity for biological fluids in addition to a high water content, softness, flexibility, permeability, and biocompatibility. The fact that these features are similar to those of a wide variety of soft living tissues paves the way for several potentials in the field of biomedicine. In this sense, hydrogels offer excellent platforms for the transport of medications and the controlled release of those drugs. Additionally, biopolymer-based hydrogels can be put as coatings on medical implants in order to improve the biocompatibility of the implants and to prevent medical diseases. CONCLUSION: The current review focuses on the most recent advancements made in the field of using biopolymeric hydrogels that are physically and chemically crosslinked, in addition to hydrogel coatings, for the purpose of providing sustained drug release of oral hypoglycemics and avoiding problems that are associated with the traditional dosage forms of oral hypoglycemics.

5.
Mini Rev Med Chem ; 22(13): 1772-1788, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35049431

RESUMO

Bridged peptide macrobicycles (BPMs) from natural resources belong to types of compounds that are not investigated fully in terms of their formation, pharmacological potential, and stereo- chemical properties. This division of biologically active congeners with multiple circular rings has merits over other varieties of peptide molecules. BPMs form one of the most hopeful grounds for the establishment of drugs because of their close resemblance and biocompatibility with proteins, and these bio-actives are debated as feasible, realistic tools in diverse biomedical applications. Despite huge potential, poor metabolic stability and cell permeability limit the therapeutic success of macrocyclic peptides. In this review, we have comprehensively explored major bicyclic peptides sourced from plants and mushrooms, including ßs-leucyl-tryptophano-histidine bridged and tryptophanocysteine bridged peptide macrobicycles. The unique structural features, structure-activity relationship, synthetic routes, bioproperties, and therapeutic potential of the natural BPMs are also discussed.


Assuntos
Celosia , Amanita/metabolismo , Celosia/metabolismo , Peptídeos/química , Peptídeos Cíclicos/química
6.
Environ Sci Pollut Res Int ; 28(46): 64987-65013, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34601675

RESUMO

Coronaviruses are terrifically precise and adapted towards specialized respiratory epithelial cells, observed in organ culture and human volunteers both. This virus is found to possess an unpredictable anti-viral T-cell response which in turn results in T-cell activation and finally apoptosis, leading to cytokine storm and collapse of the whole immune system. The present review provides comprehensive information regarding SARS-CoV-2 infection, mutant strains, and the impact of SARS-COV-2 on vital organs, the pathophysiology of the disease, diagnostic tests available, and possible treatments. It also includes all the vaccines developed so far throughout the world to control this pandemic. Until now, 18 vaccines have been approved by the WHO and further 22 vaccines are in the third trial. This study also provides up-to-date information regarding the drugs repurposed in clinical trials and the recent status of allopathic drugs along with its result. Although vaccines are available, specific treatment is not available for the disease. Furthermore, the effect of vaccines on new variants is a new area of research at this time. Therefore, a preventive attitude is the best approach to fight against this virus.


Assuntos
COVID-19 , Humanos , Pandemias , SARS-CoV-2
7.
Arch Pharm (Weinheim) ; 354(8): e2100034, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33913195

RESUMO

Among peptide-based drugs, naturally occurring bicyclic compounds have been established as molecules with unique therapeutic potential. The diverse pharmacological activities associated with bicyclic peptides from marine tunicates, sponges, and bacteria render them suitable to be employed as effective surrogate between complex and small therapeutic moieties. Bicyclic peptides possess greater conformational rigidity and higher metabolic stability as compared with linear and monocyclic peptides. The antibody-like affinity and specificity of bicyclic peptides enable their binding to the challenging drug targets. Bridged macrobicyclic peptides from natural marine resources represent an underexplored class of molecules that provides promising platforms for drug development owing to their biocompatibility, similarity, and chemical diversity to proteins. The present review explores major marine-derived bicyclic peptides including disulfide-bridged, histidinotyrosine-bridged, or histidinoalanine-bridged macrobicyclic peptides along with their structural characteristics, synthesis, structure-activity relationship, and bioproperties.The comparison of these macrobicyclic congeners with linear/monocyclic peptides along with their therapeutic potential are also briefly discussed.


Assuntos
Organismos Aquáticos/metabolismo , Produtos Biológicos/farmacologia , Peptídeos Cíclicos/farmacologia , Animais , Produtos Biológicos/síntese química , Produtos Biológicos/química , Desenvolvimento de Medicamentos , Humanos , Peptídeos Cíclicos/síntese química , Peptídeos Cíclicos/química , Relação Estrutura-Atividade
8.
Turk J Pharm Sci ; 17(1): 74-80, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32454764

RESUMO

OBJECTIVES: Fast dispersible tablets (FDTs) get dispersed very fast due to which the discrimination of in vitro drug release and their evaluation is difficult. Hence in the present study a new in vitro discriminatory dissolution method was developed and validated for FDTs of domperidone of BCS class II. MATERIALS AND METHODS: FDTs of domperidone were prepared by direct compression method. The dissolution studies were performed in an eight-station Electrolab TDT-082 dissolution testing apparatus, analyzed by ultraviolet spectrophotometer and evaluated in different dissolution mediums i.e. sodium lauryl sulphate (0.5%, 1.0% and 1.5%) with fresh distilled water, simulated intestinal fluid pH 6.8, simulated gastric fluid pH 1.2 without enzymes, phosphate buffer solution (pH 6.8) and 0.1 N hydrochloric acid at different agitation speeds. RESULTS: The developed method was validated in terms of specificity, accuracy, precision, linearity and robustness. Amongst the different mediums, 0.5% sodium lauryl sulfate (SLS) with distilled water was found to be optimum with higher rate of discriminatory power. The percentage recovery was found to be 96 to 100.12 % and the % relative standard deviation value for precision (intraday and interday) was found to be less than 1%. Also a dissolution profile of prepared FDTs were compared in distilled water containing 0.5% SLS using similarity (f2) and dissimilarity (f1) factor calculation which showed dissimilarity in release profile and confirms the discriminatory nature of developed method. CONCLUSION: The discriminatory dissolution method for FDTs was developed and validated. All the obtained results were satisfactory, accurate and in range. The current method could be beneficial for formulation development and for assessment of quality of FDTs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA