Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Small Methods ; : e2400045, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38967324

RESUMO

The success of a nanopore experiment relies not only on the quality of the experimental design but also on the performance of the analysis program utilized to decipher the ionic perturbations necessary for understanding the fundamental molecular intricacies. An event extraction framework is developed that leverages parallel computing, efficient memory management, and vectorization, yielding significant performance enhancement. The newly developed abf-ultra-simple function extracts key parameters from the header critical for the operation of open-seek-read-close data loading architecture running on multiple cores. This underpins the swift analysis of large files where an ≈ × 18 improvement is found for a 100 min-long file (≈4.5 GB) compared to the more traditional single (cell) array data loading method. The application is benchmarked against five other analysis platforms showcasing significant performance enhancement (>2 ×-1120 ×). The integrated provisions for batch analysis enable concurrently analyzing multiple files (vital for high-bandwidth experiments). Furthermore, the application is equipped with multi-level data fitting based on abrupt changes in the event waveform. The application condenses the extracted events to a single binary file improving data portability (e.g., 16 GB file with 28 182 events reduces to 47.9 MB-343 × size reduction) and enables a multitude of post-analysis extractions to be done efficiently.

2.
Small ; 19(29): e2300198, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37026669

RESUMO

Stability, long lifetime, resilience against clogging, low noise, and low cost are five critical cornerstones of solid-state nanopore technology. Here, a fabrication protocol is described wherein >1 million events are obtained from a single solid-state nanopore with both DNA and protein at the highest available lowpass filter (LPF, 100 kHz) of the Axopatch 200B-the highest event count mentioned in literature. Moreover, a total of ≈8.1 million events are reported in this work encompassing the two analyte classes. With the 100 kHz LPF, the temporally attenuated population is negligible while with the more ubiquitous 10 kHz, ≈91% of the events are attenuated. With DNA experiments, the pores are operational for hours (typically >7 h) while the average pore growth is merely ≈0.16 ± 0.1 nm h-1 . The current noise is exceptionally stable with traces typically showing <10 pA h-1 increase in noise. Furthermore, a real-time method to clean and revive pores clogged with analyte with the added benefit of minimal pore growth during cleaning (< 5% of the original diameter) is showcased. The enormity of the data collected herein presents a significant advancement to solid-state pore performance and will be useful for future ventures such as machine learning where large amounts of pristine data are a prerequisite.


Assuntos
Nanoporos , DNA , Nanotecnologia/métodos
3.
Electrophoresis ; 44(1-2): 349-359, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36401829

RESUMO

A nanopore device is capable of providing single-molecule level information of an analyte as they translocate through the sensing aperture-a nanometer-sized through-hole-under the influence of an applied electric field. In this study, a silicon nitride (Six Ny )-based nanopore was used to characterize the human serum transferrin receptor protein (TfR) under various applied voltages. The presence of dimeric forms of TfR was found to decrease exponentially as the applied electric field increased. Further analysis of monomeric TfR also revealed that its unfolding behaviors were positively dependent on the applied voltage. Furthermore, a comparison between the data of monomeric TfR and its ligand protein, human serum transferrin (hSTf), showed that these two protein populations, despite their nearly identical molecular weights, could be distinguished from each other by means of a solid-state nanopore (SSN). Lastly, the excluded volumes of TfR were experimentally determined at each voltage and were found to be within error of their theoretical values. The results herein demonstrate the successful application of an SSN for accurately classifying monomeric and dimeric molecules while the two populations coexist in a heterogeneous mixture.


Assuntos
Nanoporos , Transferrina , Humanos , Ligantes , Receptores da Transferrina/metabolismo
4.
Electrophoresis ; 43(5-6): 785-792, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35020223

RESUMO

Electrolyte chemistry plays an important role in the transport properties of analytes through nanopores. Here, we report the translocation properties of the protein human serum transferrin (hSTf) in asymmetric LiCl salt concentrations with either positive (Ctrans /Ccis < 1) or negative chemical gradients (Ctrans /Ccis > 1). The cis side concentration was fixed at 4 M for positive chemical gradients and at 0.5 M LiCl for negative chemical gradients, while the trans side concentration varied between 0.5 to 4 M which resulted in six different configurations, respectively, for both positive and negative gradient types. For positive chemical gradient conditions, translocations were observed in all six configurations for at least one voltage polarity whereas with negative gradient conditions, dead concentrations where no events at either polarity were observed. The flux of Li+ and Cl- ions and their resultant cation or anion enrichment zones, as well as the interplay of electrophoretic and electroosmotic transport directions, would determine whether hSTf can traverse across the pore.


Assuntos
Nanoporos , Eletrólitos/química , Eletro-Osmose , Eletroforese , Humanos , Íons , Transporte Proteico
5.
RSC Adv ; 11(39): 24398-24409, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34354824

RESUMO

Nanopore probing of molecular level transport of proteins is strongly influenced by electrolyte type, concentration, and solution pH. As a result, electrolyte chemistry and applied voltage are critical for protein transport and impact, for example, capture rate (C R), transport mechanism (i.e., electrophoresis, electroosmosis or diffusion), and 3D conformation (e.g., chaotropic vs. kosmotropic effects). In this study, we explored these using 0.5-4 M LiCl and KCl electrolytes with holo-human serum transferrin (hSTf) protein as the model protein in both low (±50 mV) and high (±400 mV) electric field regimes. Unlike in KCl, where events were purely electrophoretic, the transport in LiCl transitioned from electrophoretic to electroosmotic with decreasing salt concentration while intermediate concentrations (i.e., 2 M and 2.5 M) were influenced by diffusion. Segregating diffusion-limited capture rate (R diff) into electrophoretic (R diff,EP) and electroosmotic (R diff,EO) components provided an approach to calculate the zeta-potential of hSTf (ζ hSTf) with the aid of C R and zeta potential of the nanopore surface (ζ pore) with (ζ pore-ζ hSTf) governing the transport mechanism. Scrutinization of the conventional excluded volume model revealed its shortcomings in capturing surface contributions and a new model was then developed to fit the translocation characteristics of proteins.

6.
Anal Chem ; 93(34): 11710-11718, 2021 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-34463103

RESUMO

Solid-state nanopore technology delivers single-molecule resolution information, and the quality of the deliverables hinges on the capability of the analysis platform to extract maximum possible events and fit them appropriately. In this work, we present an analysis platform with four baseline fitting methods adaptive to a wide range of nanopore traces (including those with a step or abrupt changes where pre-existing platforms fail) to maximize extractable events (2× improvement in some cases) and multilevel event fitting capability. The baseline fitting methods, in the increasing order of robustness and computational cost, include arithmetic mean, linear fit, Gaussian smoothing, and Gaussian smoothing and regressed mixing. The performance was tested with ultra-stable to vigorously fluctuating current profiles, and the event count increased with increasing fitting robustness prominently for vigorously fluctuating profiles. Turning points of events were clustered using the dbscan method, followed by segmentation into preliminary levels based on abrupt changes in the signal level, which were then iteratively refined to deduce the final levels of the event. Finally, we show the utility of clustering for multilevel DNA data analysis, followed by the assessment of protein translocation profiles.


Assuntos
Nanoporos , DNA , Nanotecnologia , Análise de Sequência de DNA
7.
Electrophoresis ; 42(7-8): 899-909, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33340118

RESUMO

Recently, we developed a fabrication method-chemically-tuned controlled dielectric breakdown (CT-CDB)-that produces nanopores (through thin silicon nitride membranes) surpassing legacy drawbacks associated with solid-state nanopores (SSNs). However, the noise characteristics of CT-CDB nanopores are largely unexplored. In this work, we investigated the 1/f noise of CT-CDB nanopores of varying solution pH, electrolyte type, electrolyte concentration, applied voltage, and pore diameter. Our findings indicate that the bulk Hooge parameter (αb ) is about an order of magnitude greater than SSNs fabricated by transmission electron microscopy (TEM) while the surface Hooge parameter (αs ) is ∼3 order magnitude greater. Theαs of CT-CDB nanopores was ∼5 orders of magnitude greater than theirαb , which suggests that the surface contribution plays a dominant role in 1/f noise. Experiments with DNA exhibited increasing capture rates with pH up to pH ∼8 followed by a drop at pH ∼9 perhaps due to the onset of electroosmotic force acting against the electrophoretic force. The1/f noise was also measured for several electrolytes and LiCl was found to outperform NaCl, KCl, RbCl, and CsCl. The 1/f noise was found to increase with the increasing electrolyte concentration and pore diameter. Taken together, the findings of this work suggest the pH approximate 7-8 range to be optimal for DNA sensing with CT-CDB nanopores.


Assuntos
Nanoporos , DNA , Eletrólitos , Eletro-Osmose , Microscopia Eletrônica de Transmissão
8.
Nanotechnology ; 31(33): 335707, 2020 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-32357346

RESUMO

Solid-state nanopores (SSNs) are single-molecule resolution sensors with a growing footprint in real-time bio-polymer profiling-most prominently, but far from exclusively, DNA sequencing. SSNs accessibility has increased with the advent of controlled dielectric breakdown (CDB), but severe fundamental challenges remain: drifts in open-pore current and (irreversible) analyte sticking. These behaviors impede basic research and device development for commercial applications and can be dramatically exacerbated by the chemical complexity and physical property diversity of different analytes. We demonstrate a SSN fabrication approach attentive to nanopore surface chemistry during pore formation, and thus create nanopores in silicon nitride (SiNx) capable of sensing a wide analyte scope-nucleic acid (double-stranded DNA), protein (holo-human serum transferrin) and glycan (maltodextrin). In contrast to SiNx pores fabricated without this comprehensive approach, the pores are Ohmic in electrolyte, have extremely stable open-pore current during analyte translocation (>1 h) over a broad range of pore diameters ([Formula: see text]3- ∼30 nm) with spontaneous current correction (if current deviation occurs), and higher responsiveness (i.e. inter-event frequency) to negatively charged analytes (∼6.5 × in case of DNA). These pores were fabricated by modifying CDB with a chemical additive-sodium hypochlorite-that resulted in dramatically different nanopore surface chemistry including ∼3 orders of magnitude weaker Ka (acid dissociation constant of the surface chargeable head-groups) compared to CDB pores which is inextricably linked with significant improvements in nanopore performance with respect to CDB pores.

9.
Electrophoresis ; 41(7-8): 630-637, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31709550

RESUMO

In this work, we present a step-by-step workflow for the fabrication of 2D hexagonal boron nitride (h-BN) nanopores which are then used to sense holo-human serum transferrin (hSTf) protein at pH ∼8 under applied voltages ranging from +100 mV to +800 mV. 2D nanopores are often used for DNA, however, there is a great void in the literature for single-molecule protein sensing and this, to the best of our knowledge, is the first time where h-BN-a material with large band-gap, low dielectric constant, reduced parasitic capacitance and minimal charge transfer induced noise-is used for protein profiling. The corresponding ΔG (change in pore conductance due to analyte translocation) profiles showed a bimodal Gaussian distribution where the lower and higher ΔG distributions were attributed to (pseudo-) folded and unfolded conformations respectively. With increasing voltage, the voltage induced unfolding increased (evident by decrease in ΔG) and plateaued after ∼400 mV of applied voltage. From the ΔG versus voltage profile corresponding to the pseudo-folded state, we calculated the molecular radius of hSTf, and was found to be ∼3.1 nm which is in close concordance with the literature reported value of ∼3.25 nm.


Assuntos
Compostos de Boro/química , Técnicas Eletroquímicas/métodos , Nanoporos , Transferrina/química , Desenho de Equipamento , Humanos , Conformação Proteica , Termodinâmica , Titânio , Transferrina/análise
10.
Anal Chem ; 91(21): 13665-13674, 2019 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-31525946

RESUMO

In this study, we investigated the translocation characteristics of flagellar filaments (Salmonella typhimurium) and flagellin subunits through silicon nitride nanopores in tandem with optical microscopy analysis. Even though untagged flagella are dark to the optical method, the label-free nature of the nanopore sensor allows it to characterize both tagged (Cy3) and pristine forms of flagella (including real-time developments). Flagella were depolymerized to flagellin subunits at ∼65 °C (most commonly reported temperature), ∼70 °C, ∼75 °C, and ∼80 °C to investigate the effect of temperature (Tdepol) on depolymerization. The change in conductance (ΔG) profiles corresponding to Tdepol ∼65 °C and ∼70 °C were bracketed within the flagellin monomer profile whereas those of ∼75 °C and ∼80 °C extended beyond this profile, suggesting a change to the native protein state. The molecular radius calculated from the excluded electrolyte volume of flagellin through nanopore-based ΔG characteristics for each Tdepol of ∼65 °C, ∼70 °C, ∼75 °C, and ∼80 °C yielded ∼4.2 ± 0.2 nm, ∼4.3 ± 0.3 nm, ∼4.1 ± 0.2 nm, and ∼4.7 ± 0.5 nm, respectively. This, along with ΔG (plateaued values) and translocation time profiles, points to the possibility of flagellin misfolding at ∼80 °C.


Assuntos
Flagelos/metabolismo , Flagelina/metabolismo , Microscopia/métodos , Nanoporos
11.
ACS Nano ; 13(4): 4246-4254, 2019 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-30844233

RESUMO

In this study, we investigated the voltage and pH responsiveness of human serum transferrin (hSTf) protein using silicon nitride (Si xN y) nanopores. The Fe(III)-rich holo form of hSTf was dominant when pH > pI, while the Fe(III)-free apo form was dominant when pH < pI. The translocations of hSTf were purely in an electrophoretic sense, thus depended on its pI and the solution pH. With increasing voltage, voltage driven protein unfolding became prominent which was indicated by the trends associated with change in conductance, due to hSTf translocation, and in the excluded electrolyte volume. Additionally, analysis of the translocation events of the pure apo form of hSTf showed a clear difference in the event population compared to that of the holo form. The results obtained demonstrate the successful application of nanopore devices to distinguish between the holo and apo forms of hSTf in a mixture and to analyze its folding and unfolding phenomenon over a range of pH and applied voltages.


Assuntos
Nanoporos , Transferrina/química , Eletricidade , Eletroforese/instrumentação , Humanos , Concentração de Íons de Hidrogênio , Modelos Moleculares , Nanoporos/ultraestrutura , Conformação Proteica , Dobramento de Proteína , Compostos de Silício/química
12.
Electrophoresis ; 40(9): 1337-1344, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30667089

RESUMO

This paper describes a method to gauge the stiffness of nanosized liposomes - a nanoscale vesicle - using a custom-made recapture platform coupled to a solid-state nanopore sensor. The recapture platform electrically profiles a given liposome vesicle multiple times through automated reversal of the voltage polarity immediately following a translocation instance to re-translocate the same analyte through the nanopore - provides better statistical insight at the molecular level by analyzing the same particle multiple times compared to conventional nanopore platforms. The capture frequency depends on the applied voltage with lower voltages (i.e., 100 mV) permitting higher recapture instances than at higher voltages (>200 mV) since the probability of particles exiting the nanopore capture radius increases with voltage. The shape deformation was inferred by comparing the normalized relative current blockade ( ΔI/I0̂) at the two voltage polarities to that of a rigid particle, i.e., polystyrene beads. We found that liposomes deform to adopt a prolate shape at higher voltages. This platform can be further applied to investigate the stiffness of other types of soft matters, e.g., virus, exosomes, endosomes, and accelerate the potential studies in pharmaceutics for increasing the drug packing and unpacking mechanism by controlling the stiffness of the drug vesicles.


Assuntos
Elasticidade , Lipossomos/ultraestrutura , Nanotecnologia/métodos , Automação/métodos , Eletricidade , Microesferas , Nanoporos , Poliestirenos/normas
13.
Electrophoresis ; 40(5): 776-783, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30151981

RESUMO

Enveloped viruses fuse with cells to transfer their genetic materials and infect the host cell. Fusion requires deformation of both viral and cellular membranes. Since the rigidity of viral membrane is a key factor in their infectivity, studying the rigidity of viral particles is of great significance in understating viral infection. In this paper, a nanopore is used as a single molecule sensor to characterize the deformation of pseudo-type human immunodeficiency virus type 1 at sub-micron scale. Non-infective immature viruses were found to be more rigid than infective mature viruses. In addition, the effects of cholesterol and membrane proteins on the mechanical properties of mature viruses were investigated by chemically modifying the membranes. Furthermore, the deformability of single virus particles was analyzed through a recapturing technique, where the same virus was analyzed twice. The findings demonstrate the ability of nanopore resistive pulse sensing to characterize the deformation of a single virus as opposed to average ensemble measurements.


Assuntos
HIV-1/química , Nanoporos , Vírion/química , Fenômenos Biomecânicos , Colesterol/química , Técnicas Eletroquímicas , Lipídeos de Membrana/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...