Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38854121

RESUMO

The capacity to deal with stress declines during the aging process, and preservation of cellular stress responses is critical to healthy aging. The unfolded protein response of the endoplasmic reticulum (UPRER) is one such conserved mechanism, which is critical for the maintenance of several major functions of the ER during stress, including protein folding and lipid metabolism. Hyperactivation of the UPRER by overexpression of the major transcription factor, xbp-1s, solely in neurons drives lifespan extension as neurons send a neurotransmitter-based signal to other tissue to activate UPRER in a non-autonomous fashion. Previous work identified serotonergic and dopaminergic neurons in this signaling paradigm. To further expand our understanding of the neural circuitry that underlies the non-autonomous signaling of ER stress, we activated UPRER solely in glutamatergic, octopaminergic, and GABAergic neurons in C. elegans and paired whole-body transcriptomic analysis with functional assays. We found that UPRER-induced signals from glutamatergic neurons increased expression of canonical protein homeostasis pathways and octopaminergic neurons promoted pathogen response pathways, while minor, but statistically significant changes were observed in lipid metabolism-related genes with GABAergic UPRER activation. These findings provide further evidence for the distinct role neuronal subtypes play in driving the diverse response to ER stress.

2.
bioRxiv ; 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38766219

RESUMO

Cell differentiation during organogenesis relies on precise epigenetic and transcriptional control. Disruptions to this regulation can result in developmental abnormalities and malignancies, yet the underlying mechanisms are not well understood. Wilms tumors, a type of embryonal tumor closely linked to disrupted organogenesis, harbor mutations in epigenetic regulators in 30-50% of cases. However, the role of these regulators in kidney development and pathogenesis remains unexplored. By integrating mouse modeling, histological characterizations, and single-cell transcriptomics and chromatin accessibility profiling, we show that a Wilms tumor-associated mutation in the chromatin reader protein ENL disrupts kidney development trajectory by rewiring the gene regulatory landscape. Specifically, the mutant ENL promotes the commitment of nephron progenitors while simultaneously restricting their differentiation by dysregulating key transcription factor regulons, particularly the HOX clusters. It also induces the emergence of abnormal progenitor cells that lose their chromatin identity associated with kidney specification. Furthermore, the mutant ENL might modulate stroma-nephron interactions via paracrine Wnt signaling. These multifaceted effects caused by the mutation result in severe developmental defects in the kidney and early postnatal mortality in mice. Notably, transient inhibition of the histone acetylation binding activity of mutant ENL with a small molecule displaces transcriptional condensates formed by mutant ENL from target genes, abolishes its gene activation function, and restores developmental defects in mice. This work provides new insights into how mutations in epigenetic regulators can alter the gene regulatory landscape to disrupt kidney developmental programs at single-cell resolution in vivo . It also offers a proof-of-concept for the use of epigenetics-targeted agents to rectify developmental defects.

3.
iScience ; 27(4): 109354, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38500817

RESUMO

Glia are the protectors of the nervous system, providing neurons with support and protection from cytotoxic insults. We previously discovered that four astrocyte-like glia can regulate organismal proteostasis and longevity in C. elegans. Expression of the UPRER transcription factor, XBP-1s, in these glia increases stress resistance, and longevity, and activates the UPRER in intestinal cells via neuropeptides. Autophagy, a key regulator of metabolism and aging, has been described as a cell autonomous process. Surprisingly, we find that glial XBP-1s enhances proteostasis and longevity by cell non-autonomously reprogramming organismal lipid metabolism and activating autophagy. Glial XBP-1s regulates the activation of another transcription factor, HLH-30/TFEB, in the intestine. HLH-30 activates intestinal autophagy, increases intestinal lipid catabolism, and upregulates a robust transcriptional program. Our study reveals a novel role for glia in regulating peripheral lipid metabolism, autophagy, and organellar health through peripheral activation of HLH-30 and autophagy.

4.
Sci Adv ; 7(44): eabj6818, 2021 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-34714674

RESUMO

The dysfunction of mitochondria is associated with the physiological consequences of aging and many age-related diseases. Therefore, critical quality control mechanisms exist to protect mitochondrial functions, including the unfolded protein response of the mitochondria (UPRMT). However, it is still unclear how UPRMT is regulated in mammals with mechanistic discrepancies between previous studies. Here, we reasoned that a study of conserved mechanisms could provide a uniquely powerful way to reveal previously uncharacterized components of the mammalian UPRMT. We performed cross-species comparison of genetic requirements for survival under­and in response to­mitochondrial stress between karyotypically normal human stem cells and the nematode Caenorhabditis elegans. We identified a role for EPS-8/EPS8 (epidermal growth factor receptor pathway substrate 8), a signaling protein adaptor, in general mitochondrial homeostasis and UPRMT regulation through integrin-mediated remodeling of the actin cytoskeleton. This study also highlights the use of cross-species comparisons in genetic screens to interrogate cellular pathways.

5.
Cell Rep ; 33(10): 108489, 2020 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-33296657

RESUMO

In multicellular organisms, neurons integrate a diverse array of external cues to affect downstream changes in organismal health. Specifically, activation of the endoplasmic reticulum (ER) unfolded protein response (UPRER) in neurons increases lifespan by preventing age-onset loss of ER proteostasis and driving lipid depletion in a cell non-autonomous manner. The mechanism of this communication is dependent on the release of small clear vesicles from neurons. We find dopaminergic neurons are necessary and sufficient for activation of cell non-autonomous UPRER to drive lipid depletion in peripheral tissues, whereas serotonergic neurons are sufficient to drive protein homeostasis in peripheral tissues. These signaling modalities are unique and independent and together coordinate the beneficial effects of neuronal cell non-autonomous ER stress signaling upon health and longevity.


Assuntos
Neurônios Dopaminérgicos/metabolismo , Neurônios Serotoninérgicos/metabolismo , Resposta a Proteínas não Dobradas/fisiologia , Envelhecimento , Animais , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Neurônios Dopaminérgicos/fisiologia , Retículo Endoplasmático/metabolismo , Estresse do Retículo Endoplasmático/fisiologia , Metabolismo dos Lipídeos/fisiologia , Longevidade , Neurônios/metabolismo , Proteostase/fisiologia , Neurônios Serotoninérgicos/fisiologia , Transdução de Sinais/fisiologia , Resposta a Proteínas não Dobradas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...