Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Res Sq ; 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38559131

RESUMO

Schizophrenia is characterized by substantial alterations in brain function, and previous studies suggest insulin signaling pathways, particularly involving AKT, are implicated in the pathophysiology of the disorder. This study demonstrates elevated mRNA expression of AKT1-3 in neurons from schizophrenia subjects, contrary to unchanged or diminished total AKT protein expression reported in previous postmortem studies, suggesting a potential decoupling of transcript and protein levels. Sex-specific differential AKT activity was observed, indicating divergent roles in males and females with schizophrenia. Alongside AKT, upregulation of PDPK1, a critical component of the insulin signaling pathway, and several protein phosphatases known to regulate AKT were detected. Moreover, enhanced expression of the transcription factor FOXO1, a regulator of glucose metabolism, hints at possible compensatory mechanisms related to insulin signaling dysregulation. Findings were largely independent of antipsychotic medication use, suggesting inherent alterations in schizophrenia. These results highlight the significance of AKT and related signaling pathways in schizophrenia, proposing that these changes might represent a compensatory response to a primary defect of conical insulin signaling pathways. This research underscores the need for a detailed understanding of these signaling pathways for the development of effective therapeutic strategies.

2.
Cells ; 13(1)2023 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-38201235

RESUMO

Schizophrenia is a devastating neuropsychiatric disorder associated with the dysregulation of glutamate and dopamine neurotransmitter systems. The adenosine system is an important neuroregulatory system in the brain that modulates glutamate and dopamine signaling via the ubiquitously expressed adenosine receptors; however, adenosine A1 and A2A receptor (A1R and A2AR) mRNA expression is poorly understood in specific cell subtypes in the frontal cortical brain regions implicated in this disorder. In this study, we assayed A1R and A2AR mRNA expression via qPCR in enriched populations of pyramidal neurons, which were isolated from postmortem anterior cingulate cortex (ACC) tissue from schizophrenia (n = 20) and control (n = 20) subjects using laser microdissection (LMD). A1R expression was significantly increased in female schizophrenia subjects compared to female control subjects (t(13) = -4.008, p = 0.001). A1R expression was also significantly decreased in female control subjects compared to male control subjects, suggesting sex differences in basal A1R expression (t(17) = 2.137, p = 0.047). A significant, positive association was found between dementia severity (clinical dementia rating (CDR) scores) and A2AR mRNA expression (Spearman's r = 0.424, p = 0.009). A2AR mRNA expression was significantly increased in unmedicated schizophrenia subjects, suggesting that A2AR expression may be normalized by chronic antipsychotic treatment (F(1,14) = 9.259, p = 0.009). Together, these results provide novel insights into the neuronal expression of adenosine receptors in the ACC in schizophrenia and suggest that receptor expression changes may be sex-dependent and associated with cognitive decline in these subjects.


Assuntos
Dopamina , Esquizofrenia , Feminino , Humanos , Masculino , Esquizofrenia/genética , Neurônios , Ácido Glutâmico , Adenosina , RNA Mensageiro/genética
3.
Brain Sci ; 14(1)2023 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-38248228

RESUMO

Schizophrenia is a serious cognitive disorder characterized by disruptions in neurotransmission, a process requiring the coordination of multiple kinase-mediated signaling events. Evidence suggests that the observed deficits in schizophrenia may be due to imbalances in kinase activity that propagate through an intracellular signaling network. Specifically, 3'-5'-cyclic adenosine monophosphate (cAMP)-associated signaling pathways are coupled to the activation of neurotransmitter receptors and modulate cellular functions through the activation of protein kinase A (PKA), an enzyme whose function is altered in the frontal cortex in schizophrenia. In this study, we measured the activity of PKA in human postmortem anterior cingulate cortex (ACC) and dorsolateral prefrontal cortex (DLPFC) tissue from schizophrenia and age- and sex-matched control subjects. No significant differences in PKA activity were observed in male and female individuals in either brain region; however, correlation analyses indicated that PKA activity in the ACC may be influenced by tissue pH in all subjects and by age and tissue pH in females. Our data provide novel insights into the function of PKA in the ACC and DLPFC in schizophrenia.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...