Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 11: 546345, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33042176

RESUMO

Plants can use volatiles for remote suppression of competitors. Mints produce essential oils, which are known to affect the growth of other plants. We used a comparative approach to identify allelopathic compounds from different Mints (genus Mentha, but also including Cat Mint, Nepeta cataria, and Corean Mint, Agastache rugosa, belonging to sisters clades within the Mentheae) using the standard cress germination assay as readout. To understand the mechanism behind this allelopathic effect, we investigated the response of tobacco BY-2 cell lines, expressing GFP-tagged markers for microtubules and actin filaments to these essential oils. Based on the comparison between bioactivity and chemical components, we identified menthone as prime candidate for the allelopathic effect, and confirmed this bioactivity targeted to microtubules experimentally in both, plant cells (tobaccoBY-2), and seedlings (Arabidopsis thaliana). We could show that menthone disrupted microtubules and induced mortality linked with a rapid permeabilization (less than 15 min) of the plasma membrane. This mortality was elevated in a tubulin marker line, where microtubules are mildly stabilized. Our study paves the way for the development of novel bioherbicides that would be environmentally friendly.

2.
Plant Cell Environ ; 40(11): 2858-2869, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28875517

RESUMO

Feelings in humans are mental states representing groups of physiological functions that usually have defined behavioural purposes. Feelings, being evolutionarily ancient, are thought to be coordinated in the brain stem of animals. One function of the brain is to prioritise between competing mental states and, thus, groups of physiological functions and in turn behaviour. Plants use groups of coordinated physiological activities to deal with defined environmental situations but currently have no known mental state to prioritise any order of response. Plants do have a nervous system based on action potentials transmitted along phloem conduits but which in addition, through anastomoses and other cross-links, forms a complex network. The emergent potential for this excitable network to form a mental state is unknown, but it might be used to distinguish between different and even contradictory signals to the individual plant and thus determine a priority of response. This plant nervous system stretches throughout the whole plant providing the potential for assessment in all parts and commensurate with its self-organising, phenotypically plastic behaviour. Plasticity may, in turn, depend heavily on the instructive capabilities of local bioelectric fields enabling both a degree of behavioural independence but influenced by the condition of the whole plant.


Assuntos
Fenômenos Fisiológicos Vegetais , Animais , Fenômenos Eletrofisiológicos , Sistema Nervoso/metabolismo , Floema/fisiologia , Folhas de Planta/fisiologia , Transdução de Sinais
3.
Int J Mol Sci ; 14(6): 11527-43, 2013 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-23722661

RESUMO

Low temperature adversely affects crop yields by restraining plant growth and productivity. Most temperate plants have the potential to increase their freezing tolerance upon exposure to low but nonfreezing temperatures, a process known as cold acclimation. Various physiological, molecular, and metabolic changes occur during cold acclimation, which suggests that the plant cold stress response is a complex, vital phenomenon that involves more than one pathway. The C-Repeat Binding Factor (CBF) pathway is the most important and well-studied cold regulatory pathway that imparts freezing tolerance to plants. The regulation of freezing tolerance involves the action of phytochromes, which play an important role in light-mediated signalling to activate cold-induced gene expression through the CBF pathway. Under normal temperature conditions, CBF expression is regulated by the circadian clock through the action of a central oscillator and also day length (photoperiod). The phytochrome and phytochrome interacting factor are involved in the repression of the CBF expression under long day (LD) conditions. Apart from the CBF regulon, a novel pathway involving the Z-box element also mediates the cold acclimation response in a light-dependent manner. This review provides insights into the progress of cold acclimation in relation to light quality, circadian regulation, and photoperiodic regulation and also explains the underlying molecular mechanisms of cold acclimation for introducing the engineering of economically important, cold-tolerant plants.


Assuntos
Adaptação Fisiológica/efeitos da radiação , Ritmo Circadiano/efeitos da radiação , Congelamento , Luz , Fotoperíodo , Proteínas de Plantas/metabolismo
4.
Int J Mol Sci ; 14(1): 1608-28, 2013 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-23344059

RESUMO

Plants are photosynthetic organisms that depend on sunlight for energy. Plants respond to light through different photoreceptors and show photomorphogenic development. Apart from Photosynthetically Active Radiation (PAR; 400-700 nm), plants are exposed to UV light, which is comprised of UV-C (below 280 nm), UV-B (280-320 nm) and UV-A (320-390 nm). The atmospheric ozone layer protects UV-C radiation from reaching earth while the UVR8 protein acts as a receptor for UV-B radiation. Low levels of UV-B exposure initiate signaling through UVR8 and induce secondary metabolite genes involved in protection against UV while higher dosages are very detrimental to plants. It has also been reported that genes involved in MAPK cascade help the plant in providing tolerance against UV radiation. The important targets of UV radiation in plant cells are DNA, lipids and proteins and also vital processes such as photosynthesis. Recent studies showed that, in response to UV radiation, mitochondria and chloroplasts produce a reactive oxygen species (ROS). Arabidopsis metacaspase-8 (AtMC8) is induced in response to oxidative stress caused by ROS, which acts downstream of the radical induced cell death (AtRCD1) gene making plants vulnerable to cell death. The studies on salicylic and jasmonic acid signaling mutants revealed that SA and JA regulate the ROS level and antagonize ROS mediated cell death. Recently, molecular studies have revealed genes involved in response to UV exposure, with respect to programmed cell death (PCD).


Assuntos
Células Vegetais/efeitos da radiação , Desenvolvimento Vegetal/efeitos da radiação , Plantas/efeitos da radiação , Raios Ultravioleta , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/efeitos da radiação , Morte Celular/genética , Morte Celular/efeitos da radiação , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Modelos Genéticos , Fotossíntese/genética , Fotossíntese/efeitos da radiação , Células Vegetais/metabolismo , Desenvolvimento Vegetal/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas/genética , Plantas/metabolismo
5.
Planta ; 237(4): 1083-95, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23262670

RESUMO

Rice MKRN is a member of the makorin RING finger protein gene (MKRN) family, which encodes a protein with a characteristic array of zinc-finger motifs conserved in various eukaryotes. Using non-radioactive in situ hybridization, we investigated the spatio-temporal gene expression pattern of rice MKRN during embryogenesis, imbibition, seminal and lateral root development of Oryza sativa L. var. Nipponbare. MKRN expression was ubiquitous during early organogenesis in the embryo along the apical-basal and radial axes. The expression of MKRN decreased during embryonic organ elongation and maturation compared to early embryogenesis, but increased again during imbibition. Tissue-specific and position-dependent MKRN expression was found during embryonic and post-embryonic root and shoot development. Meristematic cells ubiquitously expressed MKRN transcripts, while differentiating cells showed a gradual reduction and termination of MKRN expression. Interestingly, during post-germination MKRN expression was prominent and continued in the metabolically active, differentiated companion cells of the phloem. The differential expression pattern was observed both in the differentiating and differentiated cells. Also, MKRN was expressed in the various developmental stages of the lateral root primordia and the cells surrounding them. Expression of MKRN was also observed after periclinal division of the presumptive pericycle founder cells. The MKRN expression pattern during development of various growth stages suggests an important role of makorin RING finger protein gene (MKRN) in embryonic and post-embryonic organogenesis in both apical-basal and radial developmental axes of rice.


Assuntos
Oryza/metabolismo , Ribonucleoproteínas/metabolismo , Plântula/metabolismo , Sementes/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Organogênese , Oryza/embriologia , Oryza/crescimento & desenvolvimento , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Polinização , Plântula/crescimento & desenvolvimento , Sementes/crescimento & desenvolvimento
6.
Plant Signal Behav ; 7(3): 375-81, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22499205

RESUMO

MKRN gene family encodes zinc ring finger proteins characterized by a unique array of motifs (C3H, RING and a characteristic cys-his motif) in eukaryotes. To elucidate the function of the MKRN gene and to draw an analogy between plant root apical meristem and animal brain, we compared the gene expression pattern of MKRN in plant seeds with that of mouse embryo. The spatio-temporal expression of MKRN in seeds of pea and rice was performed using non radioactive mRNA in situ hybridization (NRISH) with DIG and BIOTIN labeled probes for pea and rice embryos respectively. Images of MKRN1 expression in e10.5 whole mount mouse embryo, hybridized with DIG labeled probes, were obtained from the Mouse Genome Database (MGD). MKRN transcripts were expressed in the vascular bundle, root apical meristem (RAM) and shoot apical meristem (SAM) in pea and rice embryos. The spatial annotation of the MKRN1 NRISH of whole mount mouse embryo shows prominent localization of MKRN1 in the brain, and its possible expression in spinal cord and the genital ridge. Localization of MKRN in the anterior and posterior ends of pea and rice embryo suggests to the probable role it may have in sculpting the pea and rice plants. The expression of MKRN in RAM may give a molecular insight into the hypothesis that plants have their brains seated in the root. The expression of MKRN is similar in functionally and anatomically analogous regions of plant and animal embryos, including the vascular bundle (spinal cord), the RAM (brain), and SAM (genital ridge) thus paving way for further inter-kingdom comparison studies.


Assuntos
Embrião de Mamíferos/metabolismo , Ribonucleoproteínas/metabolismo , Sementes/metabolismo , Animais , Hibridização In Situ , Meristema/metabolismo , Camundongos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...