Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Carbohydr Polym ; 219: 87-94, 2019 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-31151549

RESUMO

Oxidized cellulose is the most used hemostatic materials in clinical applications. In addition to its perfect hemostatic efficiency, it is degradable under in vivo conditions and supremely prevents bacterial growth. On the other hand, one of the drawbacks of the oxidized cellulose is cytotoxicity due to the strongly acidic nature during degradation. There is a number of commercially available oxidized cellulose products which are derived from regenerated and non-regenerated cellulose. On the other hand, the effect of oxidation degree and structure (regenerated or non-regenerated) on product efficiency is undetermined. Moreover, oxidation degree which is primary factor for both bactericidal and hemostatic efficiency is also crucial for assessment of the product. In this study, oxidized cellulose versus oxidized regenerated cellulose microparticles with various oxidation degree was produced and characterized. Comparative studies were conducted in terms of bactericidal and hemostatic efficiencies in addition to cytotoxicity. The results could be a reference for the optimized oxidized cellulose product for the hemostatic applications.


Assuntos
Antibacterianos , Celulose Oxidada/farmacologia , Celulose Oxidada/toxicidade , Hemólise , Hemostasia/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Células 3T3 , Animais , Antibacterianos/química , Antibacterianos/farmacologia , Celulose Oxidada/química , Humanos , Camundongos , Oxirredução
2.
Carbohydr Polym ; 200: 624-632, 2018 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-30177208

RESUMO

Effective hemostatic materials are of utmost importance for preventing bleeding in emergencies and critical injuries. Combining biodegradability, good hemostatic properties and biocompatibility, gelatin is one of the most reliable materials clinically used for preventing internal bleeding in surgeries and for stopping external hemorrhage. Cross-linking is a useful method for enhancing the absorption capacity of gelatin and for controlling the degradation process. Existing and commonly used aldehyde-containing cross-linking agents lack reliability with respect to the control of hemostatic effect, solubility and toxicity. In this study; gelatin was cross-linked with sodium oxidized regenerated cellulose (NaORC) to produce hemostatic microparticles. The NaORC was used at different ratios; and the studies on hemostatic efficiency and cytotoxicity under in vitro conditions demonstrated rapid arrest of bleeding alongside biocompatibility. These microparticles employing NaORC as a cross-linking agent for the first time demonstrated a unique structure for stopping bleeding with biocompatibility, and opened the way for different forms of cross-linked structures to be used in other biomaterials applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...