Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Mol Model ; 28(3): 69, 2022 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-35218423

RESUMO

Doxorubicin, an anthracycline antibiotic with anti-tumor activity, is produced by the bacterium Streptomyces peucetius. The interactions between doxorubicin and genetic material and the details of the intercalation with DNA have been controversial issues. Thus, the interactions of doxorubicin with purine nucleobases were studied by quantum mechanical methods. Initially, conformer analyses of doxorubicin were performed with Spartan 08 software and 319 different conformers from 422 initial structures for doxorubicin were obtained. Geometry optimizations and frequency analyses were performed for each structure using density functional theory (DFT) at B3LYP/6-31G** level using Gaussian 09 software. The most stable 20 conformers of doxorubicin and tautomers of purine nucleobases were optimized again with É·B97XD/6-31G** level and their interactions were also analyzed at the same level. The Discovery Studio 3.5 Visualizer was used to draw the initial and optimized structures of investigated geometries. The noncovalent interactions (NCIs) were visualized by calculating reduced density gradient (RDG) with Multiwfn program. The color-filled isosurfaces and RDG scatter maps of most stable interaction geometries were plotted by Visual Molecular Dynamics (VMD) software and Gnuplot 5.3 software, respectively. This study showed that adenine, guanine, and hypoxanthine nucleobases interact with doxorubicin by forming strong hydrogen bonds and π-π interactions. Considering the normal cellular conditions, the effect of solvent (water) on the interaction geometries were also analyzed and when compared to gas phase it was determined that the movements of the molecules were restricted and there was a minimal change between initial and optimized structures in the aqueous phase.


Assuntos
Guanina , Purinas , Doxorrubicina , Guanina/química , Ligação de Hidrogênio , Simulação de Dinâmica Molecular , Teoria Quântica
2.
Artigo em Inglês | MEDLINE | ID: mdl-31209012

RESUMO

There are only a few antifungal drugs used systemically in treatment, and invasive fungal infections that are resistant to these drugs are an emerging problem in health care. In this study, we performed a high-copy-number genomic DNA (gDNA) library screening to find and characterize genes that reduce susceptibility to amphotericin B, caspofungin, and voriconazole in Saccharomyces cerevisiae We identified the PDR16 and PMP3 genes for amphotericin B, the RMD9 and SWH1 genes for caspofungin, and the MRS3 and TRI1 genes for voriconazole. The deletion mutants for PDR16 and PMP3 were drug susceptible, but the other mutants had no apparent susceptibility. Quantitative-PCR analyses suggested that the corresponding drugs upregulated expression of the PDR16, PMP3, SWH1, and MRS3 genes. To further characterize these genes, we also profiled the global expression patterns of the cells after treatment with the antifungals and determined the genes and paths that were up- or downregulated. We also cloned Candida albicans homologs of the PDR16, PMP3, MRS3, and TRI1 genes and expressed them in S. cerevisiae Heterologous expression of Candida homologs also provided reduced drug susceptibility to the budding yeast cells. Our analyses suggest the involvement of new genes in antifungal drug resistance.


Assuntos
Anfotericina B/farmacologia , Antifúngicos/farmacologia , Caspofungina/farmacologia , Saccharomycetales/efeitos dos fármacos , Saccharomycetales/genética , Voriconazol/farmacologia , Candida albicans/efeitos dos fármacos , Candida albicans/genética , Candida albicans/metabolismo , Farmacorresistência Fúngica/genética , Testes de Sensibilidade Microbiana , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomycetales/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...