Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 258(Pt 2): 129060, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38159698

RESUMO

World Health Organization (WHO) warns about antimicrobial resistance (AMR) considered as the most serious threats to global health, food security, and development. There are various efforts for elimination of this serious issue. These efforts include education of individuals, new policies, development of new antimicrobials and new materials for effective delivery. Novel drug delivery systems with ability of local and on-demand delivery are one of the promising approaches for prevention of AMR. In this regard, a pH-responsive antibiotic delivery system based on pH-responsive poly(ß-amino ester) (PBAE) and enzyme responsive hyaluronic acid (HA). The polymeric nanocomplexes were obtained via electrostatic complexation of PBAE and HA in the presence of a model antibiotics, colistin and vancomycin. The particle sizes at pH 7.4 were determined in the range of 131-730 nm and 120-400 nm by DLS and STEM, respectively. When pH was switched from 7.4 to 5.5, the hydrodynamic diameter increased 2.5-32 fold. The drug release performances were tested using FITC-labeled antibiotics via fluorescence spectroscopy. The nanocomplexes released the drugs more at pH 5.5 compared to pH 7.4. Antibacterial activity of the system was evaluated on various bacteria. The nanocomplex loaded with the antibiotics exhibited significantly greater efficacy against E. coli and S. aureus.


Assuntos
Antibacterianos , Ácido Hialurônico , Polímeros , Humanos , Antibacterianos/química , Ácido Hialurônico/química , Staphylococcus aureus , Ésteres , Escherichia coli , Concentração de Íons de Hidrogênio
2.
Biomacromolecules ; 23(11): 4896-4908, 2022 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-36317475

RESUMO

Glycopolymers are synthetic macromolecules having pendant sugar moieties and widely utilized to target cancer cells. They are usually considered as a hydrophilic segment of amphiphilic block copolymers to fabricate micelles as drug carriers. A novel amphiphilic block copolymer, namely, poly(2-deoxy-2-methacrylamido-d-glucose-co-2-hydroxyethyl methacrylate)-b-poly(ß-amino ester) [P(MAG-co-HEMA)-b-PBAE], with active cancer cell targeting potential and pH responsivity was prepared. Tetrazine end functional P(MAG-co-HEMA) and norbornene end functional PBAE blocks were separately synthesized through reversible addition fragmentation chain transfer polymerization and Michael addition-based poly-condensation, respectively, and followed by end-group transformation. Then, inverse electron demand Diels Alder reaction between the tetrazine and the norbornene groups was performed by simply mixing to obtain the amphiphilic block copolymer. After characterization of the block copolymer in terms of chemical structure, pH responsivity, and drug loading/releasing, pH-responsive micelles were obtained with or without doxorubicin (DOX), a model anticancer drug. The micelles exhibited a sharp protonated/deprotonated transition on tertiary amine groups around pH 6.75 and the pH-specific release of DOX below this value. Eventually, the drug delivery potential was evaluated by cytotoxicity assays on both the noncancerous human umbilical vein endothelial cell (HUVEC) cell line and glioblastoma cell line, U87-MG. While the DOX-loaded polymeric micelles were not toxic in noncancerous HUVEC cells, being toxic only to the cancer cells indicates that it is a potential specific cell targeting strategy in the treatment of cancer.


Assuntos
Portadores de Fármacos , Micelas , Humanos , Portadores de Fármacos/química , Ésteres , Polietilenoglicóis/química , Concentração de Íons de Hidrogênio , Doxorrubicina/química , Norbornanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...