Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Neurophysiol ; 122(4): 1421-1460, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31339807

RESUMO

Acoustic overstimulation (AOS) is defined as the stressful overexposure to high-intensity sounds. AOS is a precipitating factor that leads to a glutamate (GLU)-induced Type I auditory neural excitotoxicity and an activation of an immune/inflammatory/oxidative stress response within the inner ear, often resulting in cochlear hearing loss. The dendrites of the Type I auditory neural neurons that innervate the inner hair cells (IHCs), and respond to the IHC release of the excitatory neurotransmitter GLU, are themselves directly innervated by the dynorphin (DYN)-bearing axon terminals of the descending brain stem lateral olivocochlear (LOC) system. DYNs are known to increase GLU availability, potentiate GLU excitotoxicity, and induce superoxide production. DYNs also increase the production of proinflammatory cytokines by modulating immune/inflammatory signal transduction pathways. Evidence is provided supporting the possibility that the GLU-mediated Type I auditory neural dendritic swelling, inflammation, excitotoxicity, and cochlear hearing loss that follow AOS may be part of a brain stem-activated, DYN-mediated cascade of inflammatory events subsequent to a LOC release of DYNs into the cochlea. In support of a DYN-mediated cascade of events are established investigations linking DYNs to the immune/inflammatory/excitotoxic response in other neural systems.


Assuntos
Dinorfinas/imunologia , Orelha Interna/imunologia , Orelha Interna/fisiopatologia , Ácido Glutâmico/imunologia , Perda Auditiva Provocada por Ruído/imunologia , Neurônios/imunologia , Otite/imunologia , Animais , Tronco Encefálico/imunologia , Tronco Encefálico/fisiopatologia , Orelha Interna/inervação , Humanos
2.
Brain Res ; 1499: 80-108, 2013 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-23313584

RESUMO

Tinnitus is the phantom perception of sounds occurring in the absence of an external auditory stimulus. Tinnitus: [1] effects 50 million individuals, [2] often results from acoustic trauma and, [3] is very often exacerbated under stressful conditions. Tinnitus may result from lesions occurring at any location in the auditory system, but its mechanisms are poorly understood. Evidence is provided supporting an endogenous dynorphin-mediated potentiation of glutamate excitotoxicity at cochlear Type-I auditory dendrites that may well exacerbate chronic subjective neural-generated tinnitus during periods of heightened stress. The proposed mechanism is based on the following: [1] lateral efferent olivocochlear (LEOC) axon terminals contain endogenous dynorphin neuromodulators and are presynaptic to cochlear Type-I auditory dendrites that bear both κ-opioid and N-methyl-d-aspartate (NMDA) receptors/binding sites; [2] the release of presynaptic LEOC dynorphins is likely to be triggered by sympathetic stress via the locus coeruleus; [3] sodium salicylate induces an acute excitotoxicity by potentiating glutamate neurotransmitter effects at cochlear NMDA receptors, resulting in a Type-I auditory neural-generated tinnitus; [4] dynorphins participate in central NMDA-receptor-mediated excitotoxic inflammation; and [5] κ-opioid receptor ligands also modulate Type-I auditory neural activity by potentiating glutamate at cochlear NMDA receptors. A stress-activated release of dynorphins into the cochlea could potentiate the already excitotoxic effects of glutamate, producing: [1] hyperacusis, together with an acute exacerbation of [2] chronic aberrant Type-I neural activity and [3] a worsening of the activity-dependent central auditory neural plasticity changes that must certainly generate the perception of tinnitus. Treatment options are discussed.


Assuntos
Dinorfinas/metabolismo , Receptores de Glutamato/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Estresse Psicológico/metabolismo , Zumbido/metabolismo , Humanos , Estresse Psicológico/complicações , Zumbido/etiologia
3.
Eur J Pharmacol ; 580(1-2): 100-15, 2008 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-18036588

RESUMO

Dynorphins, glutamate, and glutamate-sensitive N-Methyl-D-Aspartate (NMDA) receptors exist in the mammalian cochlea. Dynorphins produce neural excitation and excitotoxic effects in the spinal cord through a kappa-opioid facilitation of NMDA receptor-sensitivity to glutamate. The kappa-opioid receptor drug agonists N-dimethylallyl-normetazocine [(-)-pentazocine (50 mmol)] and trans-3,4-dichloro-N-methyl-N-[2-(1-pyrrolidinyl)-cyclohexyl]-benzeneacetamide [U-50488H (100 mmol)] were administered across the cochlear round window membrane in the chinchilla. Each drug produced significant post-baseline amplitude changes in the click-evoked auditory nerve compound action potential. Amplitude changes at threshold amounted to increases in sensitivity that ranged from 4-8 decibels, measured in sound pressure level (dB SPL). The large neural amplitude increases at threshold were accompanied by progressively smaller amplitude changes at 5 and 10 dB above threshold (dB SL). However, at stimulus intensities > or =20 dB SL, post-baseline neural amplitudes were suppressed to levels below baseline and control values. These bi-phasic intensity-dependent neural amplitude changes have never before been observed following i.v. administered (-)-pentazocine in this species. Finally, the bi-phasic neural amplitude changes in U-50488H-treated (100 mmol) animals were partially blocked (except at 20 dB SL), following a round window pre-treatment with the NMDA receptor drug antagonist, dizocilpine hydrogen maleate [(+)-MK-801 (8 mmol)]. Our data suggests that endogenous dynorphins within lateral efferent olivocochlear neurons differentially modulate auditory neural excitation, possibly through cochlear NMDA receptors and glutamate. The role played by lateral efferent opioid neuromodulation at cochlear NMDA receptors, is discussed.


Assuntos
Cóclea/efeitos dos fármacos , Dinorfinas/metabolismo , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Receptores Opioides kappa/agonistas , (trans)-Isômero de 3,4-dicloro-N-metil-N-(2-(1-pirrolidinil)-ciclo-hexil)-benzenoacetamida/farmacologia , Estimulação Acústica , Potenciais de Ação/efeitos dos fármacos , Animais , Limiar Auditivo/efeitos dos fármacos , Chinchila , Cóclea/metabolismo , Nervo Coclear/metabolismo , Maleato de Dizocilpina/farmacologia , Potenciais Evocados Auditivos/efeitos dos fármacos , Antagonistas de Aminoácidos Excitatórios/farmacologia , Masculino , Pentazocina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...