Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Syst Biol Reprod Med ; 67(3): 209-220, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33685300

RESUMO

Uterine smooth muscular neoplastic growths like benign leiomyomas (UL) and metastatic leiomyosarcomas (ULMS) share similar clinical symptoms, radiological and histological appearances making their clinical distinction a difficult task. Therefore, the objective of this study is to identify key genes and pathways involved in transformation of UL to ULMS through molecular differential analysis. Global gene expression profiles of 25 ULMS, 25 UL, and 29 myometrium (Myo) tissues generated on Affymetrix U133A 2.0 human genome microarrays were analyzed by deploying robust statistical, molecular interaction network, and pathway enrichment methods. The comparison of expression signals across Myo vs UL, Myo vs ULMS, and UL vs ULMS groups identified 249, 1037, and 716 significantly expressed genes, respectively (p ≤ 0.05). The analysis of 249 DEGs from Myo vs UL confirms multistage dysregulation of various key pathways in extracellular matrix, collagen, cell contact inhibition, and cytokine receptors transform normal myometrial cells to benign leiomyomas (p value ≤ 0.01). The 716 DEGs between UL vs ULMS were found to affect cell cycle, cell division related Rho GTPases and PI3K signaling pathways triggering uncontrolled growth and metastasis of tumor cells (p value ≤ 0.01). Integration of gene networking data, with additional parameters like estimation of mutation burden of tumors and cancer driver gene identification, has led to the finding of 4 hubs (JUN, VCAN, TOP2A, and COL1A1) and 8 bottleneck genes (PIK3R1, MYH11, KDR, ESR1, WT1, CCND1, EZH2, and CDKN2A), which showed a clear distinction in their distribution pattern among leiomyomas and leiomyosarcomas. This study provides vital clues for molecular distinction of UL and ULMS which could further assist in identification of specific diagnostic markers and therapeutic targets.Abbreviations UL: Uterine Leiomyomas; ULMS: Uterine Leiomyosarcoma; Myo: Myometrium; DEGs: Differential Expressed Genes; RMA: Robust Multiarray Average; DC: Degree of Centrality; BC: Betweenness of Centrality; CGC: Cancer Gene Census; FDR: False Discovery Rate; TCGA: Cancer Genome Atlas; BP: Biological Process; CC: Cellular Components; MF: Molecular Function; PPI: Protein-Protein Interaction.


Assuntos
Leiomioma , Leiomiossarcoma , Neoplasias Uterinas , Feminino , Redes Reguladoras de Genes , Humanos , Leiomioma/genética , Leiomiossarcoma/genética , Fosfatidilinositol 3-Quinases , Neoplasias Uterinas/genética
2.
Front Genet ; 9: 552, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30619444

RESUMO

MED12, a subunit of mediator complex genes is known to harbor genetic mutations, (mostly in exon 2), causal to the genesis of uterine leiomyomas among Caucasian, African American, and Asian women. However, the precise relationship between genetic mutations vs. protein or disease phenotype is not well-explained. Therefore, we sought to replicate the MED12 mutation frequency in leiomyomas of Saudi Arabian women, who represents ethnically and culturally distinct population. We performed molecular screening of MED12 gene (in 308 chromosomes belonging to 154 uterine biopsies), analyzed the genotype-disease phenotype correlations and determined the biophysical characteristics of mutated protein through diverse computational approaches. We discovered that >44% (34/77) leiomyomas of Arab women carry a spectrum of MED12 mutations (30 missense, 1 splice site, and 3 indels). In addition to known codon 44, we observed novel somatic mutations in codons 36, 38, and 55. Most genetically mutated tumors (27/30; 90%) demonstrated only one type of genetic change, highlighting that even single allele change in MED12 can have profound impact in transforming the normal uterine myometrium to leiomyomas. An interesting inverse correlation between tumor size and LH is observed when tumor is positive to MED12 mutation (p < 0.05). Our computational investigations suggest that amino acid substitution mutations in exon-2 region of MED12 might contribute to potential alterations in phenotype as well as the stability of MED12 protein. Our study, being the first one from Arab world, confirms the previous findings that somatic MED12 mutations are critical to development and progression of uterine leiomyomas irrespective of the ethnic background. We recommend that mutation screening, particularly codon 44 of MED12 can assist in molecular diagnostics of uterine leiomyomas in majority of the patients.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...