Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 5(22): 12853-12864, 2020 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-32548469

RESUMO

Various DFT functionals, including those containing long-range interactions and dispersion, together with HF and MP2 theoretical methods, were used to identify the number of H2 molecules that can be encapsulated inside a C50 cage. It is demonstrated that the 2H2@C50 complex is thermodynamically unstable based on its positive complexation energy. Some discrepancies, however, were found with respect to the stability of the H2@C50 complex. Indeed, SVWN5, PBEPBE, MP2, B2PLYP, and B2PLYPD calculations confirmed that the H2@C50 complex is thermodynamically stable, while HF, BP86, B3LYP, BHandHLYP, LC-wPBE, CAM-B3LYP, and wB97XD showed that this complex is thermodynamically unstable. Nevertheless, examination of strain and dispersion energies further supported the fact that one H2 molecule can indeed be encapsulated inside the C50 cage. Other factors, such as the host-guest interactions and bond dissociation energy, were analyzed and discussed.

2.
J Nanosci Nanotechnol ; 10(4): 2434-43, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20355445

RESUMO

As the most reactive surface, the stoichiometric O-bridge terminated anatase(001) surface attracted considerable attentions in many application fields. The interfacial electron transfer in dye-sensitized anatase(001) plays a principal role in a variety of photoinduced reactions. In the present work, the UV-vis absorption spectrum of TiO2 bulk and different surface models were calculated by means of tight-binding quantum chemical molecular dynamics program "Colors-excite" for the first time. The thickness dependence on electronic and electrical properties of anatase(001) surface was achieved. The anatase(001) surface with a thickness of 1.0 nm shows excellent electronic and electrical properties. Moreover, the most suitable binding mode (dissociative adsorption) and absorption spectra of perylene with acrylic acid (PAA) on the optimum anatase(001) were investigated. A significant red-shift was observed from the UV-vis absorption spectrum of PAA/anatase(001) system. The red-shift occurring when PAA adsorbed on anatase(001) surface suggests that PAA/anatase(001) may be potential candidate for dye-sensitized solar cell. This study also proposed an effective computational tool "Colors-excite" to study of the electronic excitation properties for both molecular and periodic systems.

3.
J Nanosci Nanotechnol ; 10(4): 2495-502, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20355453

RESUMO

Using a hybrid quantum chemical/classical molecular dynamics method, we have studied the tribochemical reaction dynamics of molybdenum dithiocarbamate (MoDTC), a commonly used friction modifier in automobile engine oils. MoDTC molecule adsorbed on rubbing nascent iron surface was situated. We firstly investigated the dynamic behavior of MoDTC molecule on the rubbing Fe(001) surface. During the friction simulation, the elongation of Mo-O bonds was observed, forming the Mo2S4 and thiocarbamic acid molecules. To unveil the detailed mechanism of this bond elongation, the electronic states of the MoDTC molecule and Fe(001) surface were computed, and the catalytic effects of Fe(001) surface to the molecule was found. We also found that extreme friction would influence the complete Mo-O bond dissociation. By using the hybrid quantum chemical/classical molecular dynamics method, we successfully simulated the tribochemical reaction dynamics of MoDTC as a friction modifier and obtained the influences of nascent iron surface and friction on its chemical reaction.

4.
J Inorg Biochem ; 103(1): 20-7, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18848727

RESUMO

Since morpholine oxidation has recently been shown to involve Cytochrome P450, the study on its mechanism at molecular level using quantum chemical calculations for the model of cytochrome active site is reported here. The reaction pathway is investigated for two electronic states, the doublet and the quartet, by means of density functional theory. The results show that morpholine hydroxylation occurs through hydrogen atom abstraction and rebound mechanism. However, in the low spin state, the reaction is concerted and hydrogen atom abstraction yields directly ferric-hydroxy morpholine complex without a distinct rebound step while in quartet state the reaction is stepwise. The presence of nitrogen in a morpholine heterocycle is postulated to greatly facilitate hydrogen abstraction. The hydroxylated product undergoes intramolecular hydrogen atom transfer from hydroxy group to nitrogen, leading to the cleavage of the C-N bond and the formation of 2-(2-aminoethoxy) acetaldehyde. The cleavage of the C-N bond is indicated as the rate-determining step for the studied reaction. The assistance of explicit water molecule is shown to lower the energy barrier for the C-N bond cleavage in enzymatic environment whereas solvent effects mimicked by COSMO solvent model have minor influence on relative energies along the pathway.


Assuntos
Sistema Enzimático do Citocromo P-450/metabolismo , Morfolinas/metabolismo , Domínio Catalítico , Sistema Enzimático do Citocromo P-450/química , Morfolinas/química , Oxirredução , Teoria Quântica
5.
J Org Chem ; 72(21): 7923-9, 2007 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-17880239

RESUMO

The origin of conformational preference in alpha-cyano-alpha-fluorophenylacetic acid (CFPA) methyl ester that is a model system of alpha-cyano-alpha-fluoro-p-tolylacetic acid (CFTA) esters was theoretically investigated by means of DFT and MP2 calculations. Two stable conformations having the C-F bond syn and anti to the C=O bond, respectively, were obtained for CFPA methyl ester. A small energy difference (0.9 kcal mol-1 at the MP2(fc)/6-31++G(d,p)) was found between the two conformations. From the molecular orbital analysis based on the Natural Bond Orbital analysis and supported by calculations using the Orbital Deletion Procedure technique, we found that sigma-(sigma*+pi*)(C=O) and sigma-sigma*(Ph) and pi(Ph)-sigma* hyperconjugations are the main factors responsible for the conformational preference. The role of the fluorine atom on the stereogenic center was also clarified.


Assuntos
Acetatos/química , Hidrocarbonetos Fluorados/química , Modelos Químicos , Modelos Moleculares , Tolueno/análogos & derivados , Ésteres/química , Conformação Molecular , Termodinâmica , Tolueno/química
6.
J Chem Phys ; 125(18): 184306, 2006 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-17115751

RESUMO

We theoretically investigated the stability of highly charged C(60) (z+) cations produced from C(60) with an ultrashort intense laser pulse of lambda approximately 1800 nm. We first calculated the equilibrium structures and vibrational frequencies of C(60) (z+) as well as C(60). We then calculated key energies relevant to dissociation of C(60) (z+), such as the excess vibrational energy acquired upon sudden tunnel ionization from C(60). By comparing the magnitudes of the calculated energies, we found that C(60) (z+) cations up to z approximately 12 can be produced as a stable or quasistable (microsecond-order lifetime) intact parent cation, in agreement with the recent experimental report by V. R. Bhardwaj et al. [Phys. Rev. Lett. 93, 043001 (2004)] that almost only intact parent C(60) (z+) cations up to z=12 are detected by a mass spectrometer. The results of Rice-Ramsperger-Kassel-Marcus calculation suggest that the lifetime of C(60) (z+) drastically decreases by ten orders of magnitude as z increases from z=11 to z=13. Using the time-dependent adiabatic state approach, we also investigated the vibrational excitation of C(60) and C(60) (z+) by an intense near-infrared pulse. The results indicate that large-amplitude vibration with energy of >10 eV is induced in the delocalized h(g)(1)-like mode of C(60) (z+).

7.
J Phys Chem A ; 110(7): 2440-7, 2006 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-16480303

RESUMO

The S-R enantiomerization processes of 2,2'-biphenol (biphenol) have been investigated using density functional theory (DFT). Five isomers for biphenol were identified: I0, which is the most stable isomer; I1a and I1b, which are formed by a restricted rotation of one OH group; and I2a and I2b, which are formed by a restricted rotation of the two OH groups where a and b denote cis and trans configurations, respectively. Each isomer has R- and S-enantiomers. The energies relative to the most stable isomer I0 are 1.6, 3.3, 5.3, and 5.5 kcal mol(-1) for I1a, I1b, I2a, and I2b, respectively. The direct enantiomerization of I0, in which the phenol-ring rotation is considered to be the reaction coordinate while the OH rotations are frozen, is forbidden because of the repulsion between the two OH groups. The transition states for isomerizations of I0 to other isomers (I1a, I1b, I2a, or I2b) were calculated as well as those for the other direct enantiomerizations except for that of I0. From the viewpoint of the least number of the transition states and their low energy levels, the probable S-R enantiomerization of I0 is expressed as a sequential process of isomerization: I0,S --> I1a,S, a direct enantiomerization induced by one of the two OH rotations, I1a,S --> I1a,R, and another isomerization, I1a,R --> I0,R, that is, I0,S --> I1a,S --> I1a,R --> I0,R as the whole process. This process is effective in quantum control of the enantiomerization of biphenol and can be carried out by a sequence of a pump-dump IR laser-pulse scheme.


Assuntos
Algoritmos , Fenóis/química , Isomerismo , Lasers , Modelos Teóricos , Teoria Quântica , Espectrofotometria Infravermelho , Termodinâmica
8.
J Phys Chem B ; 109(29): 13921-7, 2005 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-16852747

RESUMO

By using time-dependent density functional theory, we calculated the transition energies of a zinc porphyrin monomer and its meso-meso-linked arrays. In line with the prediction of the molecular exciton model, the calculated splitting energy of the Soret band increased as the number of linked porphyrins increased. We then examined how the transition energies of the dimer array were shifted by an applied electric field. For reproduction of an electroabsorption spectrum (EA), i.e., the field-induced change in absorption intensity, a model Hamiltonian constructed from five states is proposed. It is concluded for the dimer that the field-induced coupling between the lower-energy Soret band Se and the lower-lying ionic character (charge-transfer) states is responsible for the experimentally observed blue shift of Se as well as the second-derivative profile in the EA spectrum.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...