Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38829386

RESUMO

Two pyrrolo-based compounds, 1H-pyrrolo[3,2-b]pyridine-3-carboxylic acid (L1) and 1H-pyrrolo[3,2-c]pyridine-4-carboxylic acid (L2), were employed for the detection of bovine serum albumin (BSA) by UV-Vis and fluorescence spectroscopic methods in phosphate buffer solution (pH = 7). In the presence of L1 and L2, the fluorescence emission of BSA at 340 nm was quenched and concomitantly a red-shifted emission band appeared at 420 nm (L1)/450 nm (L2). The fluorescence spectral changes indicate the protein-ligand complex formation between BSA and L1/L2. An isothermal titration calorimetry (ITC) experiment was conducted to determine the binding ability between BSA and L1/L2. The binding constants are found to be 4.45 ± 0.22 × 104 M-1 for L1 and 2.29 ± 0.11 × 104 M-1 for L2, respectively. The thermodynamic parameters were calculated from ITC measurements (i.e. ∆rH = -40 ± 2 kcal/mol, ∆rG = -4.57 ± 0.22 kcal/mol and -T∆rS = 35.4 ± 1.77 kcal/mol), which indicated that the protein-ligand complex formation between L1/L2 with BSA is mainly due to the electrostatic interactions. The protein-ligand interactions were studied by performing molecular docking. Further, the antibacterial assay of L1 and L2 was conducted against gram-positive and gram-negative bacterial strains in an effort to address the difficulties caused by the co-occurrence of antimicrobial and multidrug-resistant bacteria. E. coli and S. aureus were significantly inhibited by L1 and L2. The L1 exhibits 13, 12 and 15 mm, whereas L2 exhibits a 2, 3 and 5 mm zone of inhibition against S. aureus, S. pyogenes and E. coli, respectively. In silico molecular docking of L1 and L2 was performed with bacterial DNA gyrase to establish the intermolecular interactions. Finally, the in vitro cytotoxicity activities of the ligands L1 and L2 have been carried out using drosophila.

2.
Iran Biomed J ; 28(2&3): 71-81, 2024 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-38770844

RESUMO

Background: Bioreductive processes are quite potent, effective and affordable for the synthesis of green nanoparticles (NPs), as compared to the physical and chemical methods. The present study aimed to evaluate the bactericidal, antioxidative and anticancer activity of turmeric rhizome-iron oxide nanoparticles (FeONPs) derived from the turmeric rhizome (Curcuma amada) using ferric chloride as a precursor. Methods: With focusing on the manufacture of FeONPs via green approach, we characterized the NPs using FTIR, FT-Vis, DLS, and UV-Vis spectroscopy. The produced particles were tested for antibacterial, antioxidant, and anticancer properties. The synthesized NPs were also examined using the MDA-MB-231 human epithelial breast cancer cell line and NCI-60 cancer cell lines. Results: The antioxidant activity of TR-FeONPs was concentration-dependent. The scavenging activity of TR-FeONPs was 76.09% at a concentration of 140 µg/ml. Using different concentrations of TR-FeONPs in the MTT assay against the MDA-MB-231 cell line indicated a reduction of less than 50% in cell viability at 125 µg/ml. Moreover, TR-FeONPs exhibited an effective bactericidal property. The gTR-FeONPs synthesized bioreductively were found to be effective in renal cancer, UO-31 cell line, with GI50 value of 66.64%. Conclusion: Our study showcases a sustainable method based on green chemistry principles to produce FeONPs utilizing turmeric rhizome. We anticipate that the FeONPs produced through this biosynthesis process could serve as a promising drug delivery system in cancer treatment and as an effective antimicrobial agent against various diseases.


Assuntos
Antibacterianos , Antioxidantes , Química Verde , Antibacterianos/farmacologia , Antioxidantes/farmacologia , Humanos , Nanopartículas Magnéticas de Óxido de Ferro/química , Testes de Sensibilidade Microbiana , Animais , Compostos Férricos/farmacologia , Compostos Férricos/química
3.
Arch Pharm (Weinheim) ; 356(6): e2200664, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36942985

RESUMO

Cancer is a serious disease that has been around for a long time but currently has no sustainable solution. Several medications currently available offer an opportunity for the manifestation of cancer treatment; however, the "search for better" has led to the development and study of a variety of new scaffolds. Dihydropyrimidinones (DHPMs) are a privileged scaffold, prominent for their versatile range of biological activities. In recent years, the anticancer potential of these unsaturated pyrimidine ring systems has been traversed, along with their synthesis methods and the interlinked mechanisms leading to the anticancer activity. This review summarizes the structure-activity relationship of DHPMs as potential anticancer agents. This study is a short review of their synthesis, mechanism of action, and structure-activity relationships (SARs) that are answerable for the anticancer activity of DHPMs and have been thoroughly researched and assessed.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Relação Estrutura-Atividade , Antineoplásicos/farmacologia , Neoplasias/tratamento farmacológico
4.
J Biomol Struct Dyn ; 41(20): 11274-11285, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-36562209

RESUMO

Resistance to antibiotics/antibacterials/antifungals in pathogenic microbes has been developing over the past few decades and has recently become a commonplace public-health peril. Thus, alternative nontoxic potent antibiotic agents are covertly needed to control antibiotic-resistant outbreaks. In an effort to combat the challenges posed by the co-occurrence of multidrug resistance, two terpyridine ligands 4'-(4-N,N'-dimethylaminophenyl)-2,2':6',2″-terpyridine (L1) and 4'-(4-tolyl)-2,2':6',2″-terpyridine (L2) have been designed, prepared and confirmed their structure by spectral studies. Thereafter, antimicrobial assay was performed against gram positive and negative bacterial strains along with fungal strains. Both compounds L1 and L2 exhibited remarkable inhibitory activities against bacteria, Escherichia coli and Staphylococcus aureus at MIC values 6.25 and 3.125 µg/ml, respectively. In addition, in silico molecular docking studies were ascertained with bacterial DNA gyrase and fungal demethylase. Furthermore, both L1 and L2 could bind Bovine Serum Albumin (BSA) protein and binding interaction has been studied with the help of UV-Visible and fluorescence spectroscopy. While fluorescence of BSA unperturbed in the presence of L2, an addition of L1 to the solution of BSA resulted significant quenching. The binding constant calculations at different temperature confirmed that the fluorescence quenching between BSA and L1 is predominantly static in nature. The toxicity of L1 and L2 was checked using Drosophila melanogaster. The toxicity analysis suggest both the dyes are non-cytotoxic in nature.Communicated by Ramaswamy H. Sarma.


Assuntos
Antifúngicos , Drosophila melanogaster , Animais , Simulação de Acoplamento Molecular , Antifúngicos/farmacologia , Drosophila melanogaster/metabolismo , Espectrometria de Fluorescência/métodos , Antibacterianos/farmacologia , Antibacterianos/química , Soroalbumina Bovina/química , Ligantes , Testes de Sensibilidade Microbiana
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...