Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Exp Bot ; 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38557811

RESUMO

Hypoxia occurs when the oxygen levels fall below the levels required for mitochondria to support respiration. Regulated hypoxia is associated with quiescence, particularly in storage organs (seeds) and stem cell niches. In contrast, environmentally-induced hypoxia poses significant challenges for metabolically-active cells that are adapted to aerobic respiration. The perception of oxygen availability through cysteine oxidases, which function as oxygen-sensing enzymes in plants that control the N-degron pathway, and the regulation of hypoxia-responsive genes and processes is essential to survival. Functioning together with reactive oxygen species (ROS), particularly hydrogen peroxide and reactive nitrogen species (RNS), such as nitric oxide (•NO), nitrogen dioxide (•NO2), S-nitrosothiols (SNOs), and peroxynitrite (ONOO-), hypoxia signaling pathways trigger anatomical adaptations such as formation of aerenchyma, mobilization of sugar reserves for anaerobic germination, formation of aerial adventitious roots and hyponastic response. NO and hydrogen peroxide (H2O2) participate in local and systemic signaling pathways that facilitate acclimation to changing energetic requirements, controlling glycolytic fermentation, the GABA shunt and amino acid synthesis. NO enhances antioxidant capacity and contributes to the recycling of redox equivalents energy metabolism through the phytoglobin (Pgb)-NO cycle. Here, we summarize current knowledge, highlighting the central role of NO and redox regulation in adaptive responses that prevent hypoxia-induced death in challenging conditions such as flooding.

2.
Planta ; 258(5): 101, 2023 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-37847414

RESUMO

MAIN CONCLUSION: A comprehensive understanding of nitrogen signaling cascades involving heterotrimeric G-proteins and their putative receptors can assist in the production of nitrogen-efficient plants. Plants are immobile in nature, so they must endure abiotic stresses including nutrient stress. Plant development and agricultural productivity are frequently constrained by the restricted availability of nitrogen in the soil. Non-legume plants acquire nitrogen from the soil through root membrane-bound transporters. In depleted soil nitrogen conditions, legumes are naturally conditioned to fix atmospheric nitrogen with the aid of nodulation elicited by nitrogen-fixing bacteria. Moreover, apart from the symbiotic nitrogen fixation process, nitrogen uptake from the soil can also be a significant secondary source to satisfy the nitrogen requirements of legumes. Heterotrimeric G-proteins function as molecular switches to help plant cells relay diverse stimuli emanating from external stress conditions. They are comprised of Gα, Gß and Gγ subunits, which cooperate with several downstream effectors to regulate multiple plant signaling events. In the present review, we concentrate on signaling mechanisms that regulate plant nitrogen nutrition. Our review highlights the potential of heterotrimeric G-proteins, together with their putative receptors, to assist the legume root nodule symbiosis (RNS) cascade, particularly during calcium spiking and nodulation. Additionally, the functions of heterotrimeric G-proteins in nitrogen acquisition by plant roots as well as in improving nitrogen use efficiency (NUE) have also been discussed. Future research oriented towards heterotrimeric G-proteins through genome editing tools can be a game changer in the enhancement of the nitrogen fixation process. This will foster the precise manipulation and production of plants to ensure global food security in an era of climate change by enhancing crop productivity and minimizing reliance on external inputs.


Assuntos
Fabaceae , Proteínas Heterotriméricas de Ligação ao GTP , Rhizobium , Nódulos Radiculares de Plantas/genética , Nodulação/fisiologia , Nitrogênio/metabolismo , Fixação de Nitrogênio , Fabaceae/genética , Proteínas Heterotriméricas de Ligação ao GTP/metabolismo , Simbiose/fisiologia , Plantas/metabolismo , Verduras/metabolismo , Solo , Rhizobium/fisiologia
3.
Curr Microbiol ; 80(7): 219, 2023 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-37204538

RESUMO

Modern and industrialized agriculture enhanced farm output during the last few decades, but it became possible at the cost of agricultural sustainability. Industrialized agriculture focussed only on the increase in crop productivity and the technologies involved were supply-driven, where enough synthetic chemicals were applied and natural resources were overexploited with the erosion of genetic diversity and biodiversity. Nitrogen is an essential nutrient required for plant growth and development. Even though nitrogen is available in large quantities in the atmosphere, it cannot be utilized by plants directly with the only exception of legumes which have the unique ability to fix atmospheric nitrogen and the process is known as biological nitrogen fixation (BNF). Rhizobium, a group of gram-negative soil bacteria, helps in the formation of root nodules in legumes and takes part in the BNF. The BNF has great significance in agriculture as it acts as a fertility restorer in soil. Continuous cereal-cereal cropping system, which is predominant in a major part of the world, often results in a decline in soil fertility, while legumes add nitrogen and improve the availability of other nutrients too. In the present context of the declining trend of the yield of some important crops and cropping systems, it is the need of the hour for enriching soil health to achieve agricultural sustainability, where Rhizobium can play a magnificent role. Though the role of Rhizobium in biological nitrogen fixation is well documented, their behaviour and performance in different agricultural environments need to be studied further for a better understanding. In the article, an attempt has been made to give an insight into the behaviour, performance and mode of action of different Rhizobium species and strains under versatile conditions.


Assuntos
Fabaceae , Rhizobium , Rhizobium/genética , Mudança Climática , Fabaceae/microbiologia , Agricultura , Solo , Produção Agrícola , Fixação de Nitrogênio , Verduras , Nitrogênio/análise
4.
Plants (Basel) ; 11(18)2022 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-36145825

RESUMO

Micronutrients are essential for plants. Their growth, productivity and reproduction are directly influenced by the supply of micronutrients. Currently, there are eight trace elements considered to be essential for higher plants: Fe, Zn, Mn, Cu, Ni, B, Mo, and Cl. Possibly, other essential elements could be discovered because of recent advances in nutrient solution culture techniques and in the commercial availability of highly sensitive analytical instrumentation for elemental analysis. Much remains to be learned about the physiology of micronutrient absorption, translocation and deposition in plants, and about the functions they perform in plant growth and development. With the recent advancements in the proteomic and molecular biology tools, researchers have attempted to explore and address some of these questions. In this review, we summarize the current knowledge of micronutrients in plants and the proteomic/genomic approaches used to study plant nutrient deficiency and toxicity.

5.
Plant Physiol Biochem ; 186: 242-251, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35930936

RESUMO

Biotic and abiotic stress tolerant crops are required for sustainable agriculture as well as ensuring global food security. In a previous study, we have reported that heterologous overexpression of pea DNA helicase (PDH45), a DEAD-box family member protein, provides salinity stress tolerance in rice. The improved management of photosynthetic machinery and scavenging of reactive oxygen species (ROS) are associated with PDH45 mediated salinity stress tolerance. However, the role of PDH45 in biotic and other abiotic stress (drought) tolerance remains unexplored. In the present study, we have generated marker-free transgenic IR64 rice lines that overexpress PDH45 under the CaMV35S promoter. The transgenic rice lines exhibited a significant level of tolerance against sheath blight disease, caused by Rhizoctonia solani, a polyphagous necrotrophic fungal pathogen. The defense as well as antioxidant responsive marker genes were significantly upregulated in the PDH45 overexpressing (OE) rice lines, upon pathogen infection. Moreover, the OE lines exhibited tolerance to drought stress and various antioxidant as well as drought responsive marker genes were significantly upregulated in them, upon drought stress. Overall, the current study emphasizes that heterologous overexpression of PDH45 provides abiotic as well as biotic stress tolerance in rice. Tolerance against drought as well as sheath blight disease by overexpression of a single gene (PDH45) signifies the practical implication of the present study. Moreover, considering the conserved nature of the gene in different plant species, we anticipate that PDH45 can be gainfully deployed to impart tolerance against multiple stresses in agriculturally important crops.


Assuntos
Oryza , Antioxidantes , Secas , Regulação da Expressão Gênica de Plantas , Oryza/genética , Oryza/metabolismo , Pisum sativum/genética , Pisum sativum/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Estresse Fisiológico/genética
6.
Antioxidants (Basel) ; 11(7)2022 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-35883708

RESUMO

Cigarette smoking has been responsible for causing many life-threatening diseases such as pulmonary and cardiovascular diseases as well as lung cancer. One of the prominent health implications of cigarette smoking is the oxidative damage of cellular constituents, including proteins, lipids, and DNA. The oxidative damage is caused by reactive oxygen species (ROS, oxidants) present in the aqueous extract of cigarette smoke (CS). In recent years, there has been considerable interest in the potential health benefits of dietary polyphenols as natural antioxidant molecules. Epidemiological studies strongly suggest that long-term consumption of diets (fruits, vegetables, tea, and coffee) rich in polyphenols offer protective effects against the development of cancer, cardiovascular diseases, diabetes, osteoporosis, and neurodegenerative diseases. For instance, green tea has chemopreventive effects against CI-induced lung cancer. Tea might prevent CS-induced oxidative damages in diseases because tea polyphenols, such as catechin, EGCG, etc., have strong antioxidant properties. Moreover, apple polyphenols, including catechin and quercetin, provide protection against CS-induced acute lung injury such as chronic obstructive pulmonary disease (COPD). In CS-induced health problems, the antioxidant action is often accompanied by the anti-inflammatory effect of polyphenols. In this narrative review, the CS-induced oxidative damages and the associated health implications/pathological conditions (or diseases) and the role of diets rich in polyphenols and/or dietary polyphenolic compounds against various serious/chronic conditions of human health have been delineated.

7.
Antioxidants (Basel) ; 11(4)2022 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-35453455

RESUMO

Helicases function as key enzymes in salinity stress tolerance, and the role and function of PDH45 (pea DNA helicase 45) in stress tolerance have been reported in different crops with selectable markers, raising public and regulatory concerns. In the present study, we developed five lines of marker-free PDH45-overexpressing transgenic lines of rice (Oryza sativa L. cv. IR64). The overexpression of PDH45 driven by CaMV35S promoter in transgenic rice conferred high salinity (200 mM NaCl) tolerance in the T1 generation. Molecular attributes such as PCR, RT-PCR, and Southern and Western blot analyses confirmed stable integration and expression of the PDH45 gene in the PDH45-overexpressing lines. We observed higher endogenous levels of sugars (glucose and fructose) and hormones (GA, zeatin, and IAA) in the transgenic lines in comparison to control plants (empty vector (VC) and wild type (WT)) under salt treatments. Furthermore, photosynthetic characteristics such as net photosynthetic rate (Pn), stomatal conductance (gs), intercellular CO2 (Ci), and chlorophyll (Chl) content were significantly higher in transgenic lines under salinity stress as compared to control plants. However, the maximum primary photochemical efficiency of PSII, as an estimated from variable to maximum chlorophyll a fluorescence (Fv/Fm), was identical in the transgenics to that in the control plants. The activities of antioxidant enzymes, such as catalase (CAT), ascorbate peroxidase (APX), glutathione reductase (GR), and guaiacol peroxidase (GPX), were significantly higher in transgenic lines in comparison to control plants, which helped in keeping the oxidative stress burden (MDA and H2O2) lesser on transgenic lines, thus protecting the growth and photosynthetic efficiency of the plants. Overall, the present research reports the development of marker-free PDH45-overexpressing transgenic lines for salt tolerance that can potentially avoid public and biosafety concerns and facilitate the commercialization of genetically engineered crop plants.

8.
J King Saud Univ Sci ; 34(3): 101826, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35035181

RESUMO

Severe acute respiratory syndrome coronavirus disease (SARS-CoV-2) induced coronavirus disease 2019 (COVID-19) pandemic is the present worldwide health emergency. The global scientific community faces a significant challenge in developing targeted therapies to combat the SARS-CoV-2 infection. Computational approaches have been critical for identifying potential SARS-CoV-2 inhibitors in the face of limited resources and in this time of crisis. Main protease (Mpro) is an intriguing drug target because it processes the polyproteins required for SARS-CoV-2 replication. The application of Ayurvedic knowledge from traditional Indian systems of medicine may be a promising strategy to develop potential inhibitor for different target proteins of SARS-CoV-2. With this endeavor, we docked bioactive molecules from Triphala, an Ayurvedic formulation, against Mpro followed by molecular dynamics (MD) simulation (100 ns) to investigate their inhibitory potential against SARS-CoV-2. The top four best docked molecules (terflavin A, chebulagic acid, chebulinic acid, and corilagin) were selected for MD simulation study and the results obtained were compared to native ligand X77. From docking and MD simulation studies, the selected molecules showed promising binding affinity with the formation of stable complexes at the active binding pocket of Mpro and exhibited negative binding energy during MM-PBSA calculations, indication their strong binding affinity with the target protein. The identified bioactive molecules were further analyzed for drug-likeness by Lipinski's filter, ADMET and toxicity studies. Computational (in silico) investigations identified terflavin A, chebulagic acid, chebulinic acid, and corilagin from Triphala formulation as promising inhibitors of SARS-CoV-2 Mpro, suggesting experimental (in vitro/in vivo) studies to further explore their inhibitory mechanisms.

9.
Turk J Chem ; 46(5): 1468-1476, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-37529743

RESUMO

Illicium griffithii Hook. f. & Thoms is an endemic medicinal plant of North East India found in the Eastern Himalayan region of biodiversity mega centre. Herein, chemical investigation of I. griffithii, afforded five compounds and their structures were determined through extensive use of NMR, HRMS, and FT-IR spectroscopy. The complete proton-proton, proton-carbon coupling network of compound 1 was determined using 1H-1H COSY, HSQC and NOESY NMR experiments. All the compounds were evaluated for their cytotoxic activity by MTT assay and antimicrobial activity by Agar well diffusion method. Compound 1 exhibited significant cytotoxicity activity against Lung cancer (A549) and pancreatic cancer (MIAPaCa2) cell lines with IC50 values of 15.01 ± 2.69 µg/mL and 47.77 ± 2.38 µg/mL, respectively. Further, the compound 1 exhibited good antimicrobial activities against Escherichia coli and Candida albicans with MIC 7.50 ± 0.28 µg/mL and 7.50 ± 0.86 µg/mL, respectively. The other isolated compounds along with the extracts of I. griffithii also displayed moderate anticancer and antimicrobial activities against respective strains. To the best of our knowledge, this is the first study of isolation of compounds from bark, wood, and leaf along with cytotoxicity and antimicrobial activities of I. griffithii from the North Eastern region of India and could be a potential herbal medicine in near future.

10.
Plant Signal Behav ; 16(11): 1950888, 2021 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-34252347

RESUMO

Tomato is an important crop for its high nutritional and medicinal properties. The role of salicylic acid (SA) in 1-aminocyclopropane-1-carboxylate synthase (ACS), sodium-hydrogen exchanger (NHX1), salt overly sensitive 1 (sos1) and high-affinity K+ transporter (HKT1;2) transcripts, and ACS enzyme activity and ethylene (ET) production, and growth and physiological attributes was evaluated in tomato cv. Pusa Ruby under salinity stress. Thirty days-old seedlings treated with 0 mM NaCl, 250 mM NaCl, 250 mM NaCl plus 100 µM SA were assessed for different growth and physiological parameters at 45 DAS. Results showed ACS, NHX1, sos1 and HKT1;2 transcripts were significantly changed in SA treated plants. The ACS enzyme activity and ET content were considerably decreased in SA treated plants. Shoot length (SL), root length (RL), number of leaves (NL), leaf area per plant (LA), shoot fresh weight (SFW) and root fresh weight (RFW) were also improved under SA treatment. Conversely, the electrolyte leakage and sodium ion (Na+) content were significantly reduced in SA treated plants. In addition, the endogenous proline and potassium ion (K+) content, and K+/Na+ ratio were considerably increased under SA treatment. Likewise, antioxidant enzymes (SOD, CAT, APX and GR) profile were better in SA treated plant. The present findings suggest that SA reverse the negative effects of salinity stress and stress induced ET production by modulating ACS, NHX, sos1 and HKT1;2 transcript level, and improving various growth and physiological parameters, and antioxidants enzymes profile. This will contribute to a better understanding of salinity stress tolerance mechanisms of tomato plants involving SA and ET cross talk and ions homeostasis to develop more tolerant plant.


Assuntos
Etilenos/biossíntese , Ácido Salicílico/metabolismo , Tolerância ao Sal/efeitos dos fármacos , Tolerância ao Sal/genética , Sódio/metabolismo , Solanum lycopersicum/crescimento & desenvolvimento , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Produtos Agrícolas/genética , Produtos Agrícolas/metabolismo , Regulação da Expressão Gênica de Plantas , Genes de Plantas
11.
3 Biotech ; 11(6): 275, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34040924

RESUMO

Chromium (Cr) causes toxic effects in plants by generating reactive oxygen species (ROS) which create oxidative environment. Azotobacter vinelandii helps in growth and development of many crops; however, its role in Cr stress tolerance in rice has not been explored. Here, we report the new function of Azotobacter vinelandii strain SRI Az3 (Accession number JQ796077) in providing Cr stress tolerance in Oryza sativa (var. IR64). The efficiency of the strain was checked under different concentrations (50, 100, 150, 200 and 250 µM) of Cr stress and it was observed that it provides stress tolerance to rice plant up to 200 µM concentration. Different agronomic growth parameters were found to be better in this strain of Azotobacter vinelandii-inoculated rice plants as compared to un-inoculated one. The agronomic growth and photosynthetic characteristics such as net photosynthetic rate (PN), stomatal conductance (gs), intercellular CO2 (Ci) were also found to be significantly increased with increasing concentration of Azotobacter vinelandii inoculation. The activities of antioxidant enzymes were significantly higher (35%) in rice plants inoculated with Azotobacter vinelandii as compared with un-inoculated rice plant. All these positive effects of Azotobacter vinelandii help rice to survive from the toxic effect of Cr.

12.
Environ Sci Pollut Res Int ; 28(24): 31717-31730, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33611748

RESUMO

Sukinda chromite mine of Odisha is a heavily polluted site, generating huge overburden dumps. The present experiment was designed to evaluate the potential of two native nodule endophytic bacterial strains, viz. Bacillus aryabhattai AS03 (MT645244) and Rhizobium pusense AS05 (MT645243), isolated from contaminated sites to be considered remediation tool to minimize the effect of Cr toxicity on Macrotyloma uniflorum var. Madhu. The two nodule endophytic bacterial strains AS03 and AS05 exhibited tolerance to 1800 and 3000 ppm of Cr(VI) respectively in vitro when cultured alone. AAS analysis confirmed higher accumulation of Cr(VI) in roots and less accumulation in shoots which is dose-specific (bio-inoculant) either treated alone or combined. Complete absence of Cr accumulation approximately 99% in shoots of Macrotyloma was observed owing to synergistic effect of both the strains (biochar-based formulation). This study also suggests increased shoot and root length, nodule nos., and leghemoglobin content of the plant at 60 days indicating the plant growth-promoting effects of both the strains. ROS and antioxidant enzymes of the plant recorded decreasing trend in inoculated plants. However, a significant increment in transpiration rate, total photosynthetic rate, intracellular CO2 conc., and stomatal conductance in leaves was observed owing to dual inoculation. Our findings corroborate the supremacy of synergistic effect of both the strains applied in the form of biochar-based biofertilizer in enhancing growth and tolerance index of M. uniflorum cultivated in Cr(VI)-stressed soil. This investigation depicts the efficiency of the two nodule bacteria as a mixed inoculant to alleviate Cr toxicity and making the seeds safe for consumption.


Assuntos
Endófitos , Poluentes do Solo , Bacillus , Cromo/análise , Raízes de Plantas/química , Rhizobium , Solo , Poluentes do Solo/análise
13.
Protoplasma ; 257(6): 1639-1654, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32737572

RESUMO

Heterotrimeric G proteins consisting of Gα, Gß and Gγ subunits act as downstream effectors to regulate multiple functions including abiotic stress tolerance. However, the mechanism of Gß-mediated heat and drought tolerance is yet to be established. To explore the role of Pisum sativum Gß subunit (PsGß) in heat and drought stress, transgenic tobacco plants overexpressing (OEs) PsGß were raised. Transgenic plants showing ectopic expression of PsGß performed better under heat and drought stress in comparison with vector control plants. The seed germination, relative water content (RWC) and nitric oxide (NO) induction in the guard cells of transgenic plants were significantly higher in contrast to control plants. PsGß promoter was isolated and several stress-responsive elements were identified. The change in Gß expression in response to heat, methyl jasmonate (MeJA), abscisic acid (ABA), drought and salt confirms the presence of heat, low temperature and drought-responsive elements in the PsGß promoter. Also, heat and drought stress caused the release of NO-induced stomatal closure in the leaves of transgenic tobacco plants OEs PsGß. The better performance of transgenic plant OEs PsGß is also attributed to the improved photosynthetic parameters as compared with control plants. These findings suggest a role of PsGß in the signalling pathway leading to NO-induced stomatal closure during heat and drought stress.


Assuntos
Secas/estatística & dados numéricos , Proteínas de Ligação ao GTP/química , Óxido Nítrico/química , Pisum sativum/química , Plantas Geneticamente Modificadas/química , Temperatura Alta
14.
J Clin Transl Hepatol ; 8(2): 120-126, 2020 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-32832391

RESUMO

Background and Aims: Lifestyle (exercise and dietary) modification is the mainstay of treatment for non-alcoholic fatty liver disease (NAFLD). However, there is paucity of data on effect of intensity of exercise in management of NAFLD, and we aimed to study the effect of variable intensities of exercise on NAFLD. Methods: The study was performed in the Department of Gastroenterology of the SCB Medical College, Cuttack and the Biju Patnaik State Police Academy, Bhubaneswar. The subjects were police trainees [18 in a moderate intensity exercise group (MIG) and 19 in a low intensity exercise group (LIG)] recruited for a 6-month physical training course (261.8 Kcalorie, 3.6 metabolic equivalent in MIG and 153.6 Kcalorie, 2.1 metabolic equivalent in LIG). NAFLD was diagnosed by ultrasonography, with exclusion of all secondary causes of steatosis. All participants were evaluated by anthropometry (weight, height, body mass index (BMI), waist circumference), assessed for blood pressure and biochemical parameters (blood glucose, liver function test, lipid profile, serum insulin), and subjected to transabdominal ultrasonography before and after 6 months of physical training, and the results were compared. Results: Both the groups had similar BMI, fasting plasma glucose, AST, gamma-glutamyl transpeptidase, insulin, and homeostatic model assessment-insulin resistance (known as HOMA-IR) (p>0.05). However, subjects in the LIG were older and had lower alanine transaminase, higher triglycerides and lower high-density lipoproteins than MIG subjects. There was a significant reduction in BMI (27.0±2.1 to 26.8±2.0; p=0.001), fasting blood glucose (106.7±21.6 to 85.8±19.0; p<0.001), serum triglycerides (167.5±56.7 to 124.6±63.5; p=0.017), total cholesterol (216.8±29.2 to 196.7±26.6; p=0.037), low-density lipoprotein cholesterol (134.6±21.4 to 130.5±21.9; p=0.010), serum aspartate transaminase (39.3±32.2 to 30.9±11.4; p<0.001), serum alanine transaminase (56.6±28.7 to 33.0±11.3; p<0.001) and HOMA-IR (2.63±2.66 to 1.70±2.59; p<0.001) in the MIG. However, changes in these parameters in the LIG were non-significant. Hepatic steatosis regressed in 66.7% of the NAFLD subjects in the MIG but in only 26.3% of the LIG NAFLD subjects (p=0.030). Conclusions: Moderate rather than low intensity physical activity causes significant improvement in BMI, serum triglycerides, cholesterol, serum transaminases and HOMA-IR, and regression of ultrasonographic fatty change in liver among NAFLD subjects.

15.
Anat Cell Biol ; 53(1): 8-14, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32274243

RESUMO

Intrahepatic and extrahepatic anatomical knowledge is essential for pre procedural planning of liver transplantation, liver resection, complex biliary reconstruction and radiological biliary tree intervention. Indian data of biliary anatomy and its variation is scant in literature. The aim of our study is to find out the prevalence of common and uncommon pattern of biliary tree anatomy in magnetic resonance cholangiopancreatography (MRCP) in our population. A total of 1,038 cases of MRCP of population of Odisha were obtained from Picture Archiving and Communication System of the department and were reviewed by two senior radiologists for anatomical pattern and variations. The typical and most common pattern of right hepatic duct (RHD) branching was seen in 72.8% cases. The most common variant of RHD was trifurcation pattern of insertion of right anterior sectoral duct (RASD), right posterior sectoral duct and left hepatic duct (LHD) forming common hepatic duct (CHD) in 11.3% of cases. The common trunk of segment (SEG) II and III ducts joining the SEG IV duct was the most common LHD branching pattern in 90.3% of cases. The most common pattern of cystic duct was posterior insertion to middle third of CHD (42.8%). MRCP is the non-invasive imaging modality for demonstration of biliary duct morphology to prevent iatrogenic injury during hepatobiliary intervention and surgery.

16.
Methods Mol Biol ; 2107: 305-315, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31893455

RESUMO

Isolation of mitochondrial DNA from root tissues of mung bean (Vigna radiata) is quite tedious, complex, and often results in low yield. Hence here we show a simple, rapid, and improved protocol for isolation of mitochondrial DNA from root tissues of hydroponically grown mung bean plants. This method involves purification of mitochondria and subsequent isolation of DNA from obtained purified mitochondria. For this purpose, mitochondria were isolated using a discontinuous Percoll gradient centrifugation followed by RNase I treatment to the isolated DNA to remove any traces of RNA contamination. The mitochondrial DNA was isolated from mitochondrial samples by commonly used CTAB method. The specificity of isolated mitochondrial DNA was confirmed using mtDNA-specific genes (NAD1 and COX3). ß-Actin primer was used to check the nuclear DNA contamination. PCR amplification was observed in mtDNA specific genes NAD1 and COX3 except nuclear encoded ß-actin gene suggesting that mitochondrial DNA was not contaminated by nuclear DNA.


Assuntos
DNA Mitocondrial/isolamento & purificação , Mitocôndrias/genética , Vigna/crescimento & desenvolvimento , Centrifugação com Gradiente de Concentração , DNA Mitocondrial/análise , Hidroponia , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Reação em Cadeia da Polimerase , Vigna/genética
17.
Planta ; 250(5): 1505-1520, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31332521

RESUMO

MAIN CONCLUSION: Our study demonstrates that simultaneous overexpression of RGB1 and RGG1 genes provides multiple stress tolerance in rice by inducing stress responsive genes and better management of ROS scavenging/photosynthetic machineries. The heterotrimeric G-proteins act as signalling molecules and modulate various cellular responses including stress tolerance in eukaryotes. The gamma (γ) subunit of rice G-protein (RGG1) was earlier reported to promote salinity stress tolerance in rice. In the present study, we report that a rice gene-encoding beta (ß) subunit of G-protein (RGB1) gets upregulated during both biotic (upon a necrotrophic fungal pathogen, Rhizoctonia solani infection) and drought stresses. Marker-free transgenic IR64 rice lines that simultaneously overexpress both RGB1 and RGG1 genes under CaMV35S promoter were raised. The overexpressing (OE) lines showed enhanced tolerance to R. solani infection and salinity/drought stresses. Several defense marker genes including OsMPK3 were significantly upregulated in the R. solani-infected OE lines. We also found the antioxidant machineries to be upregulated during salinity as well as drought stress in the OE lines. Overall, the present study provides evidence that concurrent overexpression of G-protein subunits (RGG1 and RGB1) impart multiple (both biotic and abiotic) stress tolerance in rice which could be due to the enhanced expression of stress-marker genes and better management of reactive oxygen species (ROS)-scavenging/photosynthetic machinery. The current study suggests an improved approach for simultaneous improvement of biotic and abiotic stress tolerance in rice which remains a major challenge for its sustainable cultivation.


Assuntos
Proteínas de Ligação ao GTP/metabolismo , Regulação da Expressão Gênica de Plantas , Oryza/genética , Doenças das Plantas/imunologia , Espécies Reativas de Oxigênio/metabolismo , Rhizoctonia/fisiologia , Secas , Proteínas de Ligação ao GTP/genética , Expressão Gênica , Oryza/imunologia , Oryza/fisiologia , Fotossíntese , Doenças das Plantas/microbiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regiões Promotoras Genéticas/genética , Salinidade , Tolerância ao Sal , Estresse Fisiológico
18.
Ann Maxillofac Surg ; 7(1): 155-158, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28713758

RESUMO

An elderly female patient presented to surgical outpatient clinic with complaint of gradual onset of painless submental and sublingual midline swellings for 6 months of duration. The swellings were noncompressible, nontranslucent, nonpulsatile, and nontender on palpation. Clinical diagnosis was plunging ranula or dermoid cysts. Ultrasound examination of sublingual swelling showed cystic lesion with particulate content. Submental swelling showed cystic swelling with few echogenic floating lobules inside suggesting possibility of epidermoid/dermoid cyst. Magnetic resonance imaging of the face showed homogeneous fluid content within the sublingual cystic lesion and heterogeneous fluid content with few floating nodules within submental swelling. Both cystic lesions were noncommunicative and were showing diffusion restriction and no fat signal. Radiological diagnosis was sublingual and submental epidermoid cysts. She was operated under general anesthesia, and two separate cystic masses were excised with intact capsule. Histopathological diagnosis of masses confirms epidermoid cyst. Several literature have reported isolated sublingual or submandibular epidermoid cyst. However, concurrent sublingual and submental epidermoid cysts with different imaging appearance are rarely reported.

19.
Asian J Neurosurg ; 12(2): 211-213, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28484533

RESUMO

A 42-year-old female presented with the complaint of purulent discharging sinus over posterior lumbar area following one month of lumbar spinal surgery for prolapsed intervertebral disc. Gossypiboma complicated with paraspinal abscess and sinus track formation over posterior lumbar area was diagnosed in magnetic resonance imaging which was confirmed in re- exploration of lumbar spinal operative site.

20.
Protoplasma ; 254(6): 2225-2236, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28455550

RESUMO

The present investigation analyzes the in vitro P solubilization [Ca-P, Al-P, Fe(II)-P, and Fe(III)-P] efficiency of native PSB strains from acid soils of Odisha and exploitation of the same through biofertilization in peanut (Arachis hypogaea L.) growth and P acquisition. One hundred six numbers of soil samples with pH ≤ 5.50 were collected from five districts of Odisha viz., Balasore, Cuttack, Khordha, Keonjhar, and Mayurbhanj. One bacterial isolate from each district were selected and analyzed for their P solubilization efficiency in National Botanical Research Institute Phosphate broths with Ca, Al, and Fe-complexed phosphates. CTC12 and KHD08 transformed more amount of soluble P from Ca-P (CTC12 393.30 mg/L; KHD08 465.25 mg/L), Al-P (CTC12 40.00 mg/L; KHD08 34.50 mg/L), Fe(III)-P (CTC12 175.50 mg/L; KHD08 168.75 mg/L), and Fe(II)-P (CTC12 47.40 mg/L; KHD08 42.00 mg/L) after 8 days of incubation. The bioconversion of P by all the five strains in the broth medium followed the order Ca-P > Fe(III)-P > Fe(II)-P > Al-P. The identified five strains were Bacillus cereus BLS18 (KT582541), Bacillus amyloliquefaciens CTC12 (KT633845), Burkholderia cepacia KHD08 (KT717633), B. cepacia KJR03 (KT717634), and B. cepacia K1 (KM030037) and further studied for biofertilization effects on peanut. CTC12 and KHD08 enhanced the soil available P around 65 and 58% and reduced the amount of each Al3+ about 79 and 81%, respectively, over the uninoculated control pots in the peanut rhizosphere. Moreover, all tested PSB strains could be able to successfully mobilize P from inorganic P fractions (non-occluded Al-P and Fe-P). The strains CTC12 and KHD08 increased the pod yield (114 and 113%), shoot P (92 and 94%), and kernel P (100 and 101%), respectively, over the control. However, B. amyloliquefaciens CTC12 and B. cepacia KHD08 proved to be the potent P solubilizers in promoting peanut growth and yield.


Assuntos
Arachis/metabolismo , Fosfatos/metabolismo , Raízes de Plantas/metabolismo , Microbiologia do Solo , Arachis/microbiologia , Bacillus/genética , Bacillus/isolamento & purificação , Bacillus/metabolismo , Burkholderia cepacia/genética , Burkholderia cepacia/isolamento & purificação , Burkholderia cepacia/metabolismo , Concentração de Íons de Hidrogênio , Tipagem Molecular , Raízes de Plantas/microbiologia , RNA Ribossômico 16S/genética , Rizosfera , Solo/química , Solubilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...