Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
G3 (Bethesda) ; 6(10): 3129-3138, 2016 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-27543295

RESUMO

The expansion of species ranges frequently necessitates responses to novel environments. In plants, the ability of seeds to disperse to marginal areas relies in part to its ability to germinate under stressful conditions. Here we examine the genetic architecture of Arabidopsis thaliana germination speed under a novel, saline environment, using an Extreme QTL (X-QTL) mapping platform we previously developed. We find that early germination in normal and salt conditions both rely on a QTL on the distal arm of chromosome 4, but we also find unique QTL on chromosomes 1, 2, 4, and 5 that are specific to salt stress environments. Moreover, different QTLs are responsible for early vs. late germination, suggesting a temporal component to the expression of life history under these stress conditions. Our results indicate that cryptic genetic variation exists for responses to a novel abiotic stress, which may suggest a role of such variation in adaptation to new climactic conditions or growth environments.


Assuntos
Arabidopsis/crescimento & desenvolvimento , Arabidopsis/genética , Variação Genética , Germinação/genética , Tolerância ao Sal/genética , Sementes/crescimento & desenvolvimento , Sementes/genética , Estresse Fisiológico , Arabidopsis/metabolismo , Mapeamento Cromossômico , Estudos de Associação Genética , Fenótipo , Locos de Características Quantitativas , Salinidade , Plântula/genética , Plântula/crescimento & desenvolvimento , Plântula/metabolismo
2.
Mol Ecol ; 25(17): 4177-96, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27454560

RESUMO

Seed germination is a key life history transition for annual plants and partly determines lifetime performance and fitness. Germination speed, the elapsed time for a nondormant seed to germinate, is a poorly understood trait important for plants' competitiveness and fitness in fluctuating environments. Germination speed varied by 30% among 18 Arabidopsis thaliana populations measured, and exhibited weak negative correlation with flowering time and seed weight, with significant genotype effect (P < 0.005). To dissect the genetic architecture of germination speed, we developed the extreme QTL (X-QTL) mapping method in A. thaliana. The method has been shown in yeast to increase QTL mapping power by integrating selective screening and bulk-segregant analysis in a very large mapping population. By pooled genotyping of top 5% of rapid germinants from ~100 000 F3 individuals, three X-QTL regions were identified on chromosomes 1, 3 and 4. All regions were confirmed as QTL regions by sequencing 192 rapid germinants from an independent F3 selection experiment. Positional overlaps were found between X-QTLs and previously identified seed, life history and fitness QTLs. Our method provides a rapid mapping platform in A. thaliana with potentially greater power. One can also relate identified X-QTLs to the A. thaliana physical map, facilitating candidate gene identification.


Assuntos
Arabidopsis/genética , Mapeamento Cromossômico/métodos , Germinação/genética , Locos de Características Quantitativas , Arabidopsis/fisiologia , Genótipo , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...