Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Inorg Chem ; 63(21): 9941-9952, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38738811

RESUMO

The rational design of nitrite sensors has attracted significant research interest due to their widespread use and the associated risks of methemoglobinemia and carcinogenicity. The undisclosed nitrite-sensing performance of the spinel cobaltite MnCo2O4 (MCO) prepared by an oxalate-assisted coprecipitation method is reported in this study. Spectroscopy and microscopy investigations revealed the formation of uniform MCO nanorods with a high aspect ratio. The electrocatalytic nitrite oxidation at the MCO-coated glassy carbon electrode (MCO/GCE) indicated the promising performance of the synthesized material for nitrite sensing. MCO/GCE detects nitrite in a concentration range of 5 µM to 3 mM and has a limit of detection of 0.95 µM with a higher sensitivity of 857 µA mM-1 cm-2 in a response time of 4 s. In MCO, the mixed-valence states of Co2+/Co3+ confer a high electrical conductivity, and higher valent redox couples of Mn and Co impart remarkable electrocatalytic activity toward nitrite oxidation. MCO spinel undergoes facile and ultrafast faradaic reactions to mediate nitrite oxidation. Additionally, the mesopores of MCO nanorods facilitate the rapid diffusion of electrolyte and nitrite ions. Employing the electrode in sensing nitrite in milk, lake, and tap water samples further validates its potential application in real-life testing. MCO spinel nanorods showcase promising scope for utilization in the electrochemical sensing of nitrite and inspire further exploration of transition-metal oxide-based mixed-spinel materials.

2.
ACS Infect Dis ; 10(5): 1644-1653, 2024 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-38602317

RESUMO

This study describes the synthesis of amino-functionalized carbon nanoparticles derived from biopolymer chitosan using green synthesis and its application toward ultrasensitive electrochemical immunosensor of highly virulent Escherichia coli O157:H7 (E. coli O157:H7). The inherent advantage of high surface-to-volume ratio and enhanced rate transfer kinetics of nanoparticles is leveraged to push the limit of detection (LOD), without compromising on the selectivity. The prepared carbon nanoparticles were systematically characterized by employing CO2-thermal programmed desorption (CO2-TPD), Fourier transform infrared (FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS), ultraviolet-visible (UV-visible), and transmission electron microscopy (TEM). The estimated limit of detection of 0.74 CFU/mL and a sensitivity of 5.7 ((ΔRct/Rct)/(CFU/mL))/cm2 in the electrochemical impedance spectroscopy (EIS) affirm the utility of the sensor. The proposed biosensor displayed remarkable selectivity against interfering species, making it well suited for real-time applications. Moreover, the chitosan-derived semiconducting amino-functionalized carbon shows excellent sensitivity in a comparative analysis compared to highly conducting amine-functionalized carbon synthesized via chemical modification, demonstrating its vast potential as an E. coli sensor.


Assuntos
Técnicas Biossensoriais , Carbono , Quitosana , Espectroscopia Dielétrica , Escherichia coli O157 , Escherichia coli O157/isolamento & purificação , Técnicas Biossensoriais/métodos , Carbono/química , Quitosana/química , Nanopartículas/química , Limite de Detecção , Química Verde
3.
ACS Appl Bio Mater ; 6(11): 4894-4905, 2023 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-37814422

RESUMO

Engineering low-cost and efficient materials for sensing hydrazine (HA) is critical given the adverse effects of high concentrations on humans. We report an efficient electrode made up of rod-shaped Co3O4/g-C3N4 (Co3O4/graphitic carbon nitride (GCN))-coated fluorine-doped tin oxide as a desirable electrode for the detection of HA. GCN is synthesized by the thermal decomposition of melamine, Co3O4, and the heterostructure is grown by a hydrothermal process. The as-prepared materials were characterized by using spectroscopic and microscopic techniques. The voltammetric studies showed that HA can be oxidized at a lower onset potential of 0.24 V vs reference Ag/AgCl, and the composite yielded a significantly enhanced oxidation peak current than the pure components because of the high electrocatalytic activity and the synergy between Co3O4 and GCN. By employing chronoamperometry, the proposed sensor can detect HA in a wide range with a high sensitivity of 819.52 µA mM-1 cm-2 and a detection limit of 3.14 µM. The high conductivity of Co3O4, enhanced electroactive surface area, the rich redox couples of Co2+/Co3+, and the additional catalytic sites from GCN are responsible for the high performance of the heterostructure.


Assuntos
Flúor , Humanos , Eletrodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...