Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomed Signal Process Control ; 78: 103909, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35756718

RESUMO

COVID-19 has threatened the whole world since December 2019 and has also infected millions of people around the globe. It has been transmitted through the SARS CoV-2 virus. Various proteins of the SARS CoV-2 virus have an important role in its interaction with human cells. Specifically, the interaction of S-protein with human ACE-2 protein helps in entering of SARS CoV-2 virus into a human cell. This interaction take-place at some specific amino-acid locations called as hot-spots. Understanding of this interaction is helpful for drug designing and vaccine development for new variants of COVID-19 disease. An attempt has been made in this paper for understanding this interaction by finding the characteristics frequency of SARS-related protein families using the resonance recognition model (RRM). Hardware implementation of Bandpass notch (BPN) lattice IIR filter system architecture is also carried out, which is used for hot-spots identification in SARS CoV-2 proteins. Various signal processing techniques like retiming, pipelining, etc. are explored for performance improvement. Synthesis of proposed BPN filter system has been done using Xilinx ISE EDA tool on Zynq-series (Zybo-board) FPGA family. It is found that retimed and pipelined architecture of hardware-implemented BPN lattice IIR filter-based hot-spots detection system improves the speed (computational time) by 14 to 31 times for different SARS CoV2 related proteins as compared to its MATLAB simulation with similar functionality.

2.
Front Plant Sci ; 13: 1046209, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36816487

RESUMO

Introduction: Plant-microbe interactions play a vital role in the development of strategies to manage pathogen-induced destructive diseases that cause enormous crop losses every year. Rice blast is one of the severe diseases to rice Oryza sativa (O. sativa) due to Magnaporthe grisea (M. grisea) fungus. Protein-protein interaction (PPI) between rice and fungus plays a key role in causing rice blast disease. Methods: In this paper, four genomic information-based models such as (i) the interolog, (ii) the domain, (iii) the gene ontology, and (iv) the phylogenetic-based model are developed for predicting the interaction between O. sativa and M. grisea in a whole-genome scale. Results and Discussion: A total of 59,430 interacting pairs between 1,801 rice proteins and 135 blast fungus proteins are obtained from the four models. Furthermore, a machine learning model is developed to assess the predicted interactions. Using composition-based amino acid composition (AAC) and conjoint triad (CT) features, an accuracy of 88% and 89% is achieved, respectively. When tested on the experimental dataset, the CT feature provides the highest accuracy of 95%. Furthermore, the specificity of the model is verified with other pathogen-host datasets where less accuracy is obtained, which confirmed that the model is specific to O. sativa and M. grisea. Understanding the molecular processes behind rice resistance to blast fungus begins with the identification of PPIs, and these predicted PPIs will be useful for drug design in the plant science community.

3.
Artigo em Inglês | MEDLINE | ID: mdl-33621179

RESUMO

Understanding the behavioral process of life and disease-causing mechanism, knowledge regarding protein-protein interactions (PPI) is essential. In this paper, a novel hybrid approach combining deep neural network (DNN) and extreme gradient boosting classifier (XGB) is employed for predicting PPI. The hybrid classifier (DNN-XGB) uses a fusion of three sequence-based features, amino acid composition (AAC), conjoint triad composition (CT), and local descriptor (LD) as inputs. The DNN extracts the hidden information through a layer-wise abstraction from the raw features that are passed through the XGB classifier. The 5-fold cross-validation accuracy for intraspecies interactions dataset of Saccharomyces cerevisiae (core subset), Helicobacter pylori, Saccharomyces cerevisiae, and Human are 98.35, 96.19, 97.37, and 99.74 percent respectively. Similarly, accuracies of 98.50 and 97.25 percent are achieved for interspecies interaction dataset of Human- Bacillus Anthracis and Human- Yersinia pestis datasets, respectively. The improved prediction accuracies obtained on the independent test sets and network datasets indicate that the DNN-XGB can be used to predict cross-species interactions. It can also provide new insights into signaling pathway analysis, predicting drug targets, and understanding disease pathogenesis. Improved performance of the proposed method suggests that the hybrid classifier can be used as a useful tool for PPI prediction. The datasets and source codes are available at: https://github.com/SatyajitECE/DNN-XGB-for-PPI-Prediction.


Assuntos
Redes Neurais de Computação , Mapeamento de Interação de Proteínas , Aminoácidos , Humanos , Saccharomyces cerevisiae/genética , Software
4.
Proteins ; 90(2): 443-454, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34528291

RESUMO

Feature fusion and selection strategies have been applied to improve accuracy in the prediction of protein-protein interaction (PPI). In this paper, an embedded feature selection framework is developed by integrating a cost function based on analysis of variance (ANOVA) with the particle swarm optimization (PSO), termed AVPSO. Initially, the features of the protein sequences extracted using pseudo-amino acid composition (PseAAC), conjoint triad composition, and local descriptor are fused. Then, AVPSO is employed to select the optimal set of features. The light gradient boosting machine (LGBM) classifier is used to predict the PPIs using the optimal feature subset. On the five-fold cross-validation analysis, the proposed model (AVPSO-LGBM) achieved an average accuracy of 97.12% and 95.09%, respectively, on the intraspecies PPI datasets Saccharomyces cerevisiae and Helicobacter pylori. On the interspecies, PPI datasets of the Human-Bacillus and Human-Yersinia, an average accuracy of 95.20% and 93.44%, are achieved. Results obtained on independent test datasets, and network datasets show that the prediction accuracy of the AVPSO-LGBM is better than the existing methods, demonstrating its generalization ability. The improved prediction performance obtained by the proposed model makes it a reliable and effective PPI prediction model.


Assuntos
Bactérias/metabolismo , Biologia Computacional/métodos , Mapeamento de Interação de Proteínas , Proteínas/metabolismo , Humanos , Aprendizado de Máquina , Ligação Proteica
5.
Brief Bioinform ; 22(6)2021 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-34245238

RESUMO

In this paper, for accurate prediction of protein-protein interaction (PPI), a novel hybrid classifier is developed by combining the functional-link Siamese neural network (FSNN) with the light gradient boosting machine (LGBM) classifier. The hybrid classifier (FSNN-LGBM) uses the fusion of features derived using pseudo amino acid composition and conjoint triad descriptors. The FSNN extracts the high-level abstraction features from the raw features and LGBM performs the PPI prediction task using these abstraction features. On performing 5-fold cross-validation experiments, the proposed hybrid classifier provides average accuracies of 98.70 and 98.38%, respectively, on the intraspecies PPI data sets of Saccharomyces cerevisiae and Helicobacter pylori. Similarly, the average accuracies for the interspecies PPI data sets of the Human-Bacillus and Human-Yersinia data sets are 98.52 and 97.40%, respectively. Compared with the existing methods, the hybrid classifier achieves higher prediction accuracy on the independent test sets and network data sets. The improved prediction performance obtained by the FSNN-LGBM makes it a flexible and effective PPI prediction model.


Assuntos
Algoritmos , Biologia Computacional/métodos , Redes Neurais de Computação , Mapeamento de Interação de Proteínas/métodos , Aminoácidos , Bases de Dados Genéticas , Humanos , Aprendizado de Máquina , Proteínas/química , Proteínas/metabolismo , Reprodutibilidade dos Testes
6.
IEEE Trans Nanobioscience ; 20(3): 345-353, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33950844

RESUMO

Tubulin is a promising target for designing anti-cancer drugs. Identification of hotspots in multifunctional Tubulin protein provides insights for new drug discovery. Although machine learning techniques have shown significant results in prediction, they fail to identify the hotspots corresponding to a particular biological function. This paper presents a signal processing technique combining resonant recognition model (RRM) and Stockwell Transform (ST) for the identification of hotspots corresponding to a particular functionality. The characteristic frequency (CF) representing a specific biological function is determined using the RRM. Then the spectrum of the protein sequence is computed using ST. The CF is filtered from the ST spectrum using a time-frequency mask. The energy peaks in the filtered sequence represent the hotspots. The hotspots predicted by the proposed method are compared with the experimentally detected binding residues of Tubulin stabilizing drug Taxol and destabilizing drug Colchicine present in the Tubulin protein. Out of the 53 experimentally identified hotspots, 60% are predicted by the proposed method whereas around 20% are predicted by existing machine learning based methods. Additionally, the proposed method predicts some new hot spots, which may be investigated.


Assuntos
Proteínas , Tubulina (Proteína) , Sequência de Aminoácidos , Descoberta de Drogas , Processamento de Sinais Assistido por Computador , Tubulina (Proteína)/metabolismo
7.
Artigo em Inglês | MEDLINE | ID: mdl-21778522

RESUMO

Protein-protein interactions govern almost all biological processes and the underlying functions of proteins. The interaction sites of protein depend on the 3D structure which in turn depends on the amino acid sequence. Hence, prediction of protein function from its primary sequence is an important and challenging task in bioinformatics. Identification of the amino acids (hot spots) that leads to the characteristic frequency signifying a particular biological function is really a tedious job in proteomic signal processing. In this paper, we have proposed a new promising technique for identification of hot spots in proteins using an efficient time-frequency filtering approach known as the S-transform filtering. The S-transform is a powerful linear time-frequency representation and is especially useful for the filtering in the time-frequency domain. The potential of the new technique is analyzed in identifying hot spots in proteins and the result obtained is compared with the existing methods. The results demonstrate that the proposed method is superior to its counterparts and is consistent with results based on biological methods for identification of the hot spots. The proposed method also reveals some new hot spots which need further investigation and validation by the biological community.


Assuntos
Biologia Computacional/métodos , Mapeamento de Interação de Proteínas/métodos , Proteínas/química , Análise de Sequência de Proteína/métodos , Processamento de Sinais Assistido por Computador , Aminoácidos/química , Animais , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Bovinos , Fatores de Crescimento de Fibroblastos/química , Fatores de Crescimento de Fibroblastos/metabolismo , Hormônio do Crescimento Humano/química , Hormônio do Crescimento Humano/metabolismo , Humanos , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Modelos Moleculares , Proteínas/metabolismo
8.
Genomics Proteomics Bioinformatics ; 9(1-2): 45-55, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21641562

RESUMO

Accurate identification of protein-coding regions (exons) in DNA sequences has been a challenging task in bioinformatics. Particularly the coding regions have a 3-base periodicity, which forms the basis of all exon identification methods. Many signal processing tools and techniques have been applied successfully for the identification task but still improvement in this direction is needed. In this paper, we have introduced a new promising model-independent time-frequency filtering technique based on S-transform for accurate identification of the coding regions. The S-transform is a powerful linear time-frequency representation useful for filtering in time-frequency domain. The potential of the proposed technique has been assessed through simulation study and the results obtained have been compared with the existing methods using standard datasets. The comparative study demonstrates that the proposed method outperforms its counterparts in identifying the coding regions.


Assuntos
Éxons , Análise de Sequência de DNA/métodos , Animais , Humanos , Software
9.
Comput Biol Chem ; 34(5-6): 320-7, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21106461

RESUMO

During last few decades accurate determination of protein structural class using a fast and suitable computational method has been a challenging problem in protein science. In this context a meaningful representation of a protein sample plays a key role in achieving higher prediction accuracy. In this paper based on the concept of Chou's pseudo amino acid composition (Chou, K.C., 2001. Proteins 43, 246-255), a new feature representation method is introduced which is composed of the amino acid composition information, the amphiphilic correlation factors and the spectral characteristics of the protein. Thus the sample of a protein is represented by a set of discrete components which incorporate both the sequence order and the length effect. On the basis of such a statistical framework a simple radial basis function network based classifier is introduced to predict protein structural class. A set of exhaustive simulation studies demonstrates high success rate of classification using the self-consistency and jackknife test on the benchmark datasets.


Assuntos
Aminoácidos/química , Proteínas/química , Análise de Sequência de Proteína/métodos , Algoritmos , Aminoácidos/classificação , Aminoácidos/genética , Bases de Dados de Proteínas , Proteínas/classificação , Proteínas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...