Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Stem Cells Int ; 2023: 8934210, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36798674

RESUMO

Long noncoding RNAs (lncRNAs) play crucial roles in melanoma initiation and development, serving as potential therapeutic targets and prognostic markers for melanoma. lncRNA survival-associated mitochondrial melanoma-specific oncogenic noncoding RNA (SAMMSON) is upregulated in many types of human cancers. However, the functions of SAMMSON in melanoma have not been fully elucidated. This study is aimed at investigating the expression and functions of SAMMSON in melanoma development. Bioinformatics analysis was performed to determine the expression of SAMMSON and its correlation with the 10-year overall survival (OS) in melanoma patients. Cell proliferation, migration, invasion, and tumorigenesis were detected by MTT, colony formation, Transwell assays, and mouse xenograft model. The expression of cell cycle-related factors, epithelial-to-mesenchymal transition (EMT) makers, and matrix metalloproteinases (MMPs) was assessed by RT-qPCR and western blotting analysis. The results demonstrated that SAMMSON expression was upregulated in melanoma tissues and cells, and lower SAMMSON expression was correlated with longer 10-year OS. SAMMSON knockdown decreased the proliferation, migration, and invasion of melanoma cells by regulating the expression of proliferation-related genes, EMT factors, and MMPs, respectively. Additionally, Forkhead box protein A2 (FOXA2) was confirmed to be a target of SAMMSON, and the biological effects induced by FOXA2 overexpression were similar to those induced by SAMMSON silencing in melanoma cells. Further studies showed that SAMMSON downregulated FOXA2 expression in melanoma cells by modulating the EZH2/H3K27me3 axis. Taken together, our data indicate that SAMMSON plays an important role in melanoma progression and can be a valuable biomarker and therapeutic target in melanoma.

2.
Metabolites ; 12(11)2022 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-36422271

RESUMO

A high-fat diet plays an important role in aggravating cancers. Palmitic acid (PA) is one of the components of saturated fatty acids; it has been reported to promote tumor proliferation in melanomas, but the signal transduction pathway mediated by palmitic acid remains unclear. This study showed that palmitic acid can promote the lung metastasis of melanomas. Moreover, the interaction between palmitic acid and toll-like receptor 4 (TLR4) was predicted by molecular docking. The experimental results proved that palmitic acid could promote the TLR4 and Toll/IL-1 receptor domain-containing adaptor-inducing IFN-ß (TRIF) expression. The expression of Pellino1 (Peli1) and the phosphorylation of NF-kappa B (pNF-κB) were downregulated after the suppression of TLR4 and the silencing of Peli1 also inhibited the phosphorylation of NF-κB. Therefore, we concluded that palmitic acid promoted the lung metastasis of melanomas through the TLR4/TRIF-Peli1-pNF-κB pathway.

3.
Front Immunol ; 13: 989263, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36203561

RESUMO

Phosphoribosyl pyrophosphate synthetase 1 (PRPS1) is the first enzyme in the de novo purine nucleotide synthesis pathway and is essential for cell development. However, the effect of PRPS1 on melanoma proliferation and metastasis remains unclear. This study aimed to investigate the regulatory mechanism of PRPS1 in the malignant progression of melanoma. Here, we found PRPS1 was upregulated in melanoma and melanoma cells. In addition, our data indicated that PRPS1 could promote the proliferation and migration and invasion of melanoma both in vitro and in vivo. PRPS1 also could inhibit melanoma cell apoptosis. Furthermore, we found NRF2 is an upstream transcription factor of PRPS1 that drive malignant progression of melanoma.


Assuntos
Melanoma , Ribose-Fosfato Pirofosfoquinase , Humanos , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Nucleotídeos de Purina , Ribose-Fosfato Pirofosfoquinase/genética , Ribose-Fosfato Pirofosfoquinase/metabolismo , Síndrome , Regulação para Cima
4.
Int J Med Sci ; 19(1): 47-64, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34975298

RESUMO

Background: Clear cell renal cell carcinoma (ccRCC) is a cell metabolic disease with high metastasis rate and poor prognosis. Our previous studies demonstrate that glucose-6-phosphate dehydrogenase (G6PD), the first and rate-limiting enzyme of the pentose phosphate pathway, is highly expressed in ccRCC and predicts poor outcomes of ccRCC patients. The aims of this study were to confirm the oncogenic role of G6PD in ccRCC and unravels novel mechanisms involving Cyclin E1 and MMP9 in G6PD-mediated ccRCC progression. Methods: Real-time RT-PCR, Western blot and immunohistochemistry were used to determine the expression patterns of G6PD, Cyclin E1 and MMP9 in ccRCC. TCGA dataset mining was used to identify Cyclin E1 and MMP9 correlations with G6PD expression, relationships between clinicopathological characteristics of ccRCC and the genes of interest, as well as the prognosis of ccRCC patients. The role of G6PD in ccRCC progression and the regulatory effect of G6PD on Cyclin E1 and MMP9 expression were investigated by using a series of cytological function assays in vitro. To verify this mechanism in vivo, xenografted mice models were established. Results: G6PD, Cyclin E1 and MMP9 were overexpressed and positively correlated in ccRCC, and they were associated with poor prognosis of ccRCC patients. Moreover, G6PD changed cell cycle dynamics, facilitated cells proliferation, promoted migration in vitro, and enhanced ccRCC development in vivo, more likely through enhancing Cyclin E1 and MMP9 expression. Conclusion: These findings present G6PD, Cyclin E1 and MMP9, which contribute to ccRCC progression, as novel biomarkers and potential therapeutic targets for ccRCC treatment.


Assuntos
Carcinoma de Células Renais/genética , Ciclina E/genética , Regulação Neoplásica da Expressão Gênica , Glucosefosfato Desidrogenase/fisiologia , Neoplasias Renais/genética , Metaloproteinase 9 da Matriz/genética , Proteínas Oncogênicas/genética , Regulação para Cima , Animais , Carcinoma de Células Renais/metabolismo , Carcinoma de Células Renais/patologia , Linhagem Celular Tumoral , Ciclina E/metabolismo , Modelos Animais de Doenças , Progressão da Doença , Feminino , Humanos , Neoplasias Renais/metabolismo , Neoplasias Renais/patologia , Masculino , Metaloproteinase 9 da Matriz/metabolismo , Camundongos Endogâmicos BALB C , Camundongos Nus , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Proteínas Oncogênicas/metabolismo
5.
Sci Rep ; 11(1): 11736, 2021 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-34083661

RESUMO

Lung is colonized by a diverse array of microbes and the lung microbiota is profoundly involved in the development of respiratory diseases. There is little knowledge about the role of lung microbiota dysbiosis in lung cancer. In this study, we performed metagenomic sequencing on bronchoalveolar lavage (BAL) from two different sampling methods in non-small cell lung cancer (NSCLC) patients and non-cancer controls. We found the obvious variation between bronchoscopy samples and lobectomy samples. Oral taxa can be found in both bronchoscopy and lobectomy samples and higher abundance of oral taxa can be found in bronchoscopy samples. Although the NSCLC patients had similar microbial communities with non-cancer controls, rare species such as Lactobacillus rossiae, Bacteroides pyogenes, Paenibacillus odorifer, Pseudomonas entomophila, Magnetospirillum gryphiswaldense, fungus Chaetomium globosum et al. showed obvious difference between NSCLC patients and non-cancer controls. Age-, gender-, and smoking-specific species and EGFR expression-related species in NSCLC patients were detected. There results implicated that different lung segments have differential lung microbiome composition. The oral taxa are found in the lobectomy samples suggesting that oral microbiota are the true members of lung microbiota, rather than contamination during bronchoscopy. Lung cancer does not obviously alter the global microbial composition, while rare species are altered more than common species. Certain microbes may be associated with lung cancer progression.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/complicações , Disbiose , Neoplasias Pulmonares/complicações , Pulmão/microbiologia , Microbiota , Pneumonia/etiologia , Adulto , Idoso , Biomarcadores , Carcinoma Pulmonar de Células não Pequenas/diagnóstico , Feminino , Humanos , Neoplasias Pulmonares/diagnóstico , Masculino , Metagenoma , Metagenômica/métodos , Pessoa de Meia-Idade , Medição de Risco , Fatores de Risco
6.
Front Oncol ; 10: 531131, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33363002

RESUMO

Lung cancer is the most common cancer type around the world. Although major advances in cancer therapy, lung cancer has been the largest proportion of all cancer-related deaths. The respiratory tract contains many types of bacteria and a distinct lung microbiome in lung cancer patients was described in many studies. The specific roles of these lung microorganisms in lung cancer progression remain unclear. In this study, we evaluated the effect of inhalation of bronchoalveolar fluid (BAL) in the lung cancer cell growth. The microbiome-based immune and carcinogenesis was examined in tumor-bearing mouse model. We found that inhalation of BAL collected from non-small cell lung cancer (NSCLC) patients altered the lung microbiota and inhibited tumor cell growth. The inhibitory effect was due to the infiltration of CD3 and CD8+ T cells and decrease of M2 macrophages in lungs. The microbial communities of NSCLC BAL inhalation group were dominated by Pasteurella, whereas the microbial communities of non-cancer control and PBS inhalation group were dominated by Delftia. Linear discriminant analysis (LDA) indicated that the genera Pasteurella, Pseudomonas, and Chryseobacterium were increased in NSCLC BAL inhalation group, while genera Delftia, Ezakiella, Blautia, Cloacibacterium, and Microvirga et al. were increased in PBS and Non-cancer group. We demonstrated a significant positive correlation between Pasteurella and cytotoxic CD8+ TIL and a negative correlation with M2 macrophages. Coriobacteriaceae was positively correlated with M2 macrophages and negatively correlated with CD8+ cells. The abundance of Pasteurella was negatively correlated with tumor cell growth. Our findings provide a promising strategy that can be used as a therapeutic vaccine for lung cancer patients.

7.
J Cancer ; 11(14): 4123-4131, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32368295

RESUMO

Purpose: The initial step of cancer metastasis is that cancer cells acquire the capability to migrate and invade. Eph receptors comprise the largest family of receptor tyrosine and display dual role in tumor progression due to unique ephrin cis- or trans- signaling. The roles of EphB1 and its phosphorylation signaling in lung cancer remain to be elucidated. Patients and Methods: We analyzed the expression of EphB1 in both publicly available database and 60 cases of NSCLC patients with or without metastasis. The migration and invasion of lung cancer cells were assessed by a transwell assay. The activation of EphB1 signaling was assessed by western blot and real-time PCR. The EphB1 mutant was used to evaluate the effect of phosphorylation of EphB1. Results: Here, we showed that increased expression of EphB1 was detected in Non-Small-Cell Lung Cancer (NSCLC) biopies compared to non-cancer controls. Significant higher expression of EphB1 in lung biopsies were found in patients with metastasis compared to non-metastatic NSCLC patients. Higher EphB1 expression was correlated with poor patient survival in lung cancer. Overexpression of EphB1 promoted the migration and invasion of lung cancer cells. On the contrast, Ephrin-B2, a transmembrane ligand for EphB1 forward signaling, inhibited migration and invasion of lung cancer cells. TGF-ß-activated Smad2 transcriptionally upregulated the endogenous expression of EphB1. Ligand-independent EphB1 promoted Epithelial-mesenchymal transition (EMT) through upregulating CDH2. Conclusion: Our results showed that the effect of EphB1 on the migration and invasion was context-specific and was dependent on EphB1 phosphorylation.

8.
Front Oncol ; 10: 144, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32117780

RESUMO

Epithelial ovarian cancer (EOC) is the most malignant gynecological carcinoma and is of a high incidence of death due to detection at late stages when metastasis already occurs. However, the mechanism underlying metastasis of EOC remains unclear. Analysis of the open database and experiments with immunochemistry showed that LRRC4 is lowly expressed in high-grade serous ovarian cancer (HGSC) cells and during EOC metastasis. The 3D cell culture system and the orthotopic ovarian xenograft model infected with LRRC4-containing adeno-associated virus serotype 9 (AAV9) were used to confirm collective invasion and metastasis of cells in vitro and in vivo. Phos-tag SDS-PAGE was used to detect the phosphorylation of LRRC4 and PIK3R1. A number of experiments with methods such as co-immunoprecipitation and immunoblotting were performed to explore the mechanism for the actions of LRRC4 and PIK3R1 in EOC metastasis. An inverse correlation between LRRC4 and E-cadherin expression was detected in the regions of invasion in primary EOC tissues and metastatic ascites. LRRC4 binds to the cSH2 domain of PIK3R1 and inhibits the activity of PIK3R1, without disrupting the physical interactions between PIK3R1 and PIK3CA. LRRC4 inhibits EOC metastasis by targeting E-cadherin-dependent collective cell invasion and does so by inhibiting the PIK3R1-mediated AKT/GSK3ß/ß-catenin signaling pathway. LRRC4 functions as a tumor suppressor gene to inhibit EOC collective invasion and metastasis in vitro and in vivo and does so by directly binding to the cSH2 domain of PIK3R1 to exert its regulatory function. Our findings provide a potential novel approach for metastasis prognosis and a new strategy for the treatment of EOC.

9.
Cancer Biol Ther ; 21(1): 61-71, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31559898

RESUMO

EGFR-TKIs such as erlotinib and gefitinib have been introduced into the first-line treatment for patients having a mutation of deletion in exon 19 or L858R missense mutations in exon 21. Almost all patients who respond to EGFR-TKIs at first place eventually develop acquired resistance after several months of therapy. The secondary mutations and bypass signaling activation are involved in the generation of the resistance. Hypoxia in non-small cell lung cancer (NSCLC) is an important factor in treatment resistance including radiotherapy, chemotherapy and EGFR-TKI therapy. In this study, the effect of hypoxic cancer microenvironment in the bypass signaling activation was investigated. We found that bone marrow-derived mesenchymal stem cells (BMSCs) residing in the hypoxic solid cancer microenvironment highly produced molecules associated with adipocytes including adipokine leptin and IGFBPs. Leptin could induce the resistance of lung cancer cells to erlotinib through activating IGF-1R signaling. IGFBP2 counteracted the activation role of IGF-1 and induced erlotinib resistance by activating IGF-1R signaling in an IGF-1 independent manner. IGFBP2 had synergistic effect with leptin to induce erlotinib resistance. Leptin and IGFBP2 may be predictive factors for acquired resistance for EGFR-TKIs.


Assuntos
Adenocarcinoma de Pulmão/patologia , Resistencia a Medicamentos Antineoplásicos , Cloridrato de Erlotinib/farmacologia , Hipóxia/fisiopatologia , Proteína 2 de Ligação a Fator de Crescimento Semelhante à Insulina/metabolismo , Leptina/metabolismo , Células-Tronco Mesenquimais/patologia , Receptor IGF Tipo 1/metabolismo , Adenocarcinoma de Pulmão/tratamento farmacológico , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/metabolismo , Animais , Antineoplásicos/farmacologia , Apoptose , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Medula Óssea/metabolismo , Medula Óssea/patologia , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Humanos , Proteína 2 de Ligação a Fator de Crescimento Semelhante à Insulina/genética , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Masculino , Células-Tronco Mesenquimais/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Receptor IGF Tipo 1/genética , Células Tumorais Cultivadas , Microambiente Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto
10.
Cell Death Dis ; 10(12): 941, 2019 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-31819035

RESUMO

Bone marrow mesenchymal stem cells (BMSCs) are multipotent stromal cells that can differentiate into a variety of cell types. BMSCs are chemotactically guided towards the cancer cells and contribute to the formation of a cancer microenvironment. The homing of BMSCs was affected by various factors. Disseminated tumour cells (DTCs) in distant organs, especially in the bone marrow, are the source of cancer metastasis and cancer relapse. DTC survival is also determined by the microenvironment. Here we aim to elucidate how cancer-educated BMSCs promote the survival of cancer cells at primary tumour sites and distant sites. We highlight the dynamic change by identifying different gene expression signatures in intratumoral BMSCs and in BMSCs that move back in the bone marrow. Intratumoral BMSCs acquire high mobility and displayed immunosuppressive effects. Intratumoral BMSCs that ultimately home to the bone marrow exhibit a strong immunosuppressive function. Cancer-educated BMSCs promote the survival of lung cancer cells via expansion of MDSCs in bone marrow, primary tumour sites and metastatic sites. These Ly6G+ MDSCs suppress proliferation of T cells. CXCL5, nitric oxide and GM-CSF produced by cancer-educated BMSCs contribute to the formation of malignant microenvironments. Treatment with CXCL5 antibody, the iNOS inhibitor 1400w and GM-CSF antibody reduced MDSC expansion in the bone marrow, primary tumour sites and metastatic sites, and promoted the efficiency of PD-L1 antibody. Our study reveals that cancer-educated BMSCs are the component of the niche for primary lung cancer cells and DTCs, and that they can be the target for immunotherapy.


Assuntos
Carcinoma Pulmonar de Lewis/metabolismo , Carcinoma Pulmonar de Lewis/secundário , Sobrevivência Celular/genética , Células-Tronco Mesenquimais/metabolismo , Células Supressoras Mieloides/metabolismo , Células-Tronco Neoplásicas/metabolismo , Células A549 , Aloenxertos , Animais , Medula Óssea/patologia , Carcinoma Pulmonar de Lewis/patologia , Modelos Animais de Doenças , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Masculino , Transplante de Células-Tronco Mesenquimais/métodos , Camundongos , Camundongos Endogâmicos C57BL , Metástase Neoplásica/genética , Transfecção , Proteína Vermelha Fluorescente
11.
Mol Cancer ; 18(1): 40, 2019 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-30866952

RESUMO

BACKGROUND: Metastasis is the main cause of lung cancer mortality. Bone marrow-derived mesenchymal stem cells (BMSCs) are a component of the cancer microenvironment and contribute to cancer progression. Intratumoral hypoxia affects both cancer and stromal cells. Exosomes are recognized as mediators of intercellular communication. Here, we aim to further elucidate the communication between BMSC-derived exosomes and cancer cells in the hypoxic niche. METHODS: Exosomal miRNA profiling was performed using a microRNA array. Lung cancer cells and an in vivo mouse syngeneic tumor model were used to evaluate the effects of select exosomal microRNAs. Hypoxic BMSC-derived plasma exosomal miRNAs were assessed for their capacity to discriminate between cancer patients and non-cancerous controls and between cancer patients with or without metastasis. RESULTS: We demonstrate that exosomes derived from hypoxic BMSCs are taken by neighboring cancer cells and promote cancer cell invasion and EMT. Exosome-mediated transfer of select microRNAs, including miR-193a-3p, miR-210-3p and miR-5100, from BMSCs to epithelial cancer cells activates STAT3 signaling and increases the expression of mesenchymal related molecules. The diagnostic accuracy of individual microRNA showed that plasma exosomal miR-193a-3p can discriminate cancer patients from non-cancerous controls. A panel of these three plasma exosomal microRNAs showed a better diagnostic accuracy to discriminate lung cancer patients with or without metastasis than individual exosomal microRNA. CONCLUSIONS: Exosome-mediated transfer of miR-193a-3p, miR-210-3p and miR-5100, could promote invasion of lung cancer cells by activating STAT3 signalling-induced EMT. These exosomal miRNAs may be promising noninvasive biomarkers for cancer progression.


Assuntos
Transição Epitelial-Mesenquimal , Exossomos/genética , Hipóxia/fisiopatologia , Neoplasias Pulmonares/secundário , Células-Tronco Mesenquimais/patologia , MicroRNAs/genética , Fator de Transcrição STAT3/metabolismo , Animais , Apoptose , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Estudos de Casos e Controles , Movimento Celular , Proliferação de Células , Exossomos/metabolismo , Feminino , Seguimentos , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Masculino , Células-Tronco Mesenquimais/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Nus , Pessoa de Meia-Idade , Prognóstico , Fator de Transcrição STAT3/genética , Transdução de Sinais , Taxa de Sobrevida , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
13.
BMC Cancer ; 18(1): 1293, 2018 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-30594162

RESUMO

BACKGROUND: The Epstein-Barr virus (EBV) is closely associated with several types of malignancies. EBV is normally present in the latent state in the peripheral blood B cell compartment. The EBV latent-to-lytic switch is required for virus spread and virus-induced carinogenesis. Immunosuppression or DNA damage can induce the reactivation of EBV replication. EBV alone is rarely sufficient to cause cancer. In this study, we investigated the roles of host microRNAs and environmental factors, such as DNA-damage agents, in EBV reactivation and its association with lymphomagenesis. METHODS: We first analyzed the publicly available microRNA array data containing 45 diffuse large B-cell lymphoma patients and 10 control lymph nodes or B cells with or without EBV infection. In situ hybridization for miR-18a and immunohistochemitry were performed to evaluate the correlation between the expression of miR-18a and nuclear EBV protein EBNA1 in lymphoid neoplasm. The proliferative effects of miR-18a were investigated in EBV-positive or -negative lymphoid neoplasm cell lines. EBV viral load was measured by a quantitative real-time EBV PCR and FISH assay. The genomic instability was evaluated by CGH-array. RESULTS: In this study, we analyzed the publicly available microRNA array data and observed that the expression of the miR-17-92 cluster was associated with EBV status. In situ hybridization for miR-18a, which is a member of the miR-17-92 cluster, showed a significant upregulation in lymphoma samples. miR-18a, which shares the homolog sequence with EBV-encoded BART-5, promoted the proliferation of lymphoma cells in an EBV status-dependent manner. The DNA-damaging agent UV or hypoxia stress induced EBV activation, and miR-18a contributed to DNA damaging-induced EBV reactivation. In contrast to the promoting effect of ATM on the lytic EBV reactivation in normoxia, ATM inhibited lytic EBV gene expression and decreased the EBV viral load in the prescence of hypoxia-induced DNA damage. miR-18a reactivated EBV through inhibiting the ATM-mediated DNA damage response (DDR) and caused genomic instability. CONCLUSIONS: Taken together, these results indicate that DNA-damaging agents and host microRNAs play roles in EBV reactivation. Our study supported the interplay between host cell DDR, environmental genotoxic stress and EBV.


Assuntos
Infecções por Vírus Epstein-Barr/genética , Herpesvirus Humano 4/fisiologia , Interações entre Hospedeiro e Microrganismos/genética , Linfoma Difuso de Grandes Células B/genética , MicroRNAs/metabolismo , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Carcinogênese/genética , Hipóxia Celular/genética , Linhagem Celular Tumoral , Dano ao DNA/efeitos da radiação , Replicação do DNA/genética , DNA Viral/genética , Conjuntos de Dados como Assunto , Infecções por Vírus Epstein-Barr/tratamento farmacológico , Infecções por Vírus Epstein-Barr/virologia , Feminino , Regulação Neoplásica da Expressão Gênica , Instabilidade Genômica , Herpesvirus Humano 4/isolamento & purificação , Humanos , Linfoma Difuso de Grandes Células B/patologia , Linfoma Difuso de Grandes Células B/virologia , Masculino , Pessoa de Meia-Idade , Raios Ultravioleta/efeitos adversos , Regulação para Cima , Carga Viral , Ativação Viral/genética , Replicação Viral/genética
14.
J Cell Mol Med ; 22(12): 5776-5786, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30255991

RESUMO

Accumulating evidence indicates that cancer cells spread much earlier than was previously believed. Recent technological advances have greatly improved the detection methods of circulating tumour cells (CTCs), suggesting that the dissemination of cancer cells into the circulation occurs randomly. Most CTCs die in circulation as a result of shear stress and/or anoikis. However, the persistence of disseminated tumour cells (DTCs) in the bone marrow is the result of interaction of DTCs with bone marrow microenvironment. DTCs in the bone marrow undergo successive clonal expansions and a parallel progression that leads to new variants. Compared to the CTCs, DTCs in the bone marrow have a unique signature, which displayed dormant, mesenchymal phenotype and osteoblast-like or osteoclast-like phenotype. The persistence of DTCs in the bone marrow is always related to minimal residual diseases (MRDs). This review outlines the difference between CTCs and DTCs in the bone marrow and describes how this difference affects the clinical values of CTCs and DTCs, such as metastasis and recurrence. We suggest that DTCs remaining in the bone marrow after therapy can be used as a superior marker in comparison with CTCs to define patients with an unfavourable prognosis and may therefore be a potential prognostic factor and therapeutic target for cancer therapy.


Assuntos
Medula Óssea/patologia , Recidiva Local de Neoplasia/patologia , Neoplasias/patologia , Neoplasias/terapia , Animais , Biomarcadores Tumorais/metabolismo , Humanos , Metástase Neoplásica , Células Neoplásicas Circulantes/patologia
15.
BMC Infect Dis ; 17(1): 323, 2017 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-28468603

RESUMO

BACKGROUND: Epstein Barr virus (EBV) plays a causal role in some diseases, including infectious mononucleosis, lymphoproliferative diseases and nasopharyngeal carcinoma. Detection of EBV infection has been shown to be a useful tool for diagnosing EBV-related diseases. In the present study, we compared the performance of molecular tests, including fluorescence in situ hybridization (FISH) and EBV real-time PCR, to those of serological assays for the detection of EBV infection. METHODS: Thirty-eight patients with infectious mononucleosis (IM) were enrolled, of whom 31 were diagnosed with a mild type, and seven were diagnosed with IM with haemophagocytic lymphohistiocytosis and chronic active EBV infection. Twenty healthy controls were involved in the study. The atypical lymphocytes in peripheral blood were detected under a microscope and the percentage of positive cells was calculated. EBV DNA load in peripheral blood was detected using real-time PCR. The FISH assay was developed to detect the EBV genome from peripheral blood mononuclear cells (PBMC). Other diagnosis methods including the heterophil agglutination (HA) test and EBV-VCA-IgM test, to detect EBV were also compared. SPSS17.0 was used for statistical analysis. RESULTS: In all, 5-41% atypical lymphocytes were found among the PBMC in mild IM patients, whereas 8-51% atypical lymphocytes were found in IM patients with haemophagocytic lymphohistiocytosis and chronic active EBV infection patients. There was no significant difference in the ratios of atypical lymphoma between patients of the different types. We observed that 71.2% of mild IM patients and 85.7% of IM patients with haemophagocytic lymphohistiocytosis and chronic active EBV infection patients were positive for EBV-VCA-IgM. EBV-VCA-IgM was negative in all healthy control subjects. In addition, 67.1% of mild IM patients tested heterophile antibody positive, whereas 71.4% of IM patients with haemophagocytic lymphohistiocytosis and chronic active EBV infection tested positive. EBV DNA detected using real-time PCR was observed in 89.5% of these IM patients. The EBV genome was detected by the FISH assay in 97.4% of the IM patients. The EB viral loads detected by FISH and real-time PCR increased with the severity of IM. The EBV genome was detected in almost all the PBMC of IM with haemophagocytic lymphohistiocytosis and chronic active EBV infection patients. CONCLUSION: Molecular tests, including FISH and EBV real-time PCR, are more sensitive than serological assays for the detection of EBV infection. The FISH assay detecting EBV copies in unfractionated whole blood is preferable and superior to plasma real-time PCR in its reflection of the absolute viral burden circulating in the patients.


Assuntos
Herpesvirus Humano 4/genética , Hibridização in Situ Fluorescente/métodos , Mononucleose Infecciosa/virologia , Carga Viral/métodos , Adolescente , Antígenos Virais/sangue , Proteínas do Capsídeo/sangue , Estudos de Casos e Controles , Criança , Pré-Escolar , DNA Viral/sangue , Infecções por Vírus Epstein-Barr/diagnóstico , Infecções por Vírus Epstein-Barr/virologia , Feminino , Herpesvirus Humano 4/imunologia , Herpesvirus Humano 4/patogenicidade , Humanos , Lactente , Leucócitos Mononucleares/virologia , Linfo-Histiocitose Hemofagocítica/virologia , Masculino , Plasma/virologia , Reação em Cadeia da Polimerase em Tempo Real , Sensibilidade e Especificidade
16.
J Biomed Nanotechnol ; 13(4): 458-68, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29388752

RESUMO

Non-small cell lung cancer (NSCLC) accounts for 85% of lung cancer cases. EGFR tyrosine kinase inhibitors (EGFR-TKIs) such as erlotinib and gefitinib, are currently approved for the management of NSCLC. However, primary and acquired resistances to EGFR-TKIs are the major obstacles in the treatment of NSCLC. These resistances have been associated with the development of secondary mutations in EGFR or continued oncogenic signaling despite TKI treatment. In this study, NSCLC cells with wild-type EGFR, A549, H460, H358, H157 which do not respond to EGFR-TKIs, were used. We investigated whether a combination therapy of erlotinib plus iron oxide nanoparticles (IONPs) could sensitize NSCLC cells to erlotinib-induced cancer inhibition. In the 4 NSCLC cells investigated, erlotinib and IONPs combination therapy obviously inhibited NSCLC proliferation in vitro and in vivo, compared with erlotinib treatment alone. This effect was not dependent on erlotinib dose. Activation of ErbB3 was observed in these refractory NSCLC cells. Combined with IONPs, erlotinib could block ErbB3 activity and induce the expression of PTEN, which in turn inhibited the downstream PI3KAKT signaling pathway. These data demonstrate the therapeutic potential of biocompatible IONPs in combination with EGFR-TKIs in NSCLC, thus expanding and repurposing the current therapy for NSCLC.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , PTEN Fosfo-Hidrolase/metabolismo , Células A549 , Apoptose/efeitos dos fármacos , Carcinoma Pulmonar de Células não Pequenas/patologia , Proliferação de Células/efeitos dos fármacos , Difusão , Regulação para Baixo/efeitos dos fármacos , Combinação de Medicamentos , Receptores ErbB/metabolismo , Cloridrato de Erlotinib/administração & dosagem , Cloridrato de Erlotinib/química , Humanos , Neoplasias Pulmonares/patologia , Nanopartículas de Magnetita/administração & dosagem , Nanocápsulas/administração & dosagem , Nanocápsulas/química , Proteína Oncogênica v-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo
17.
Oncotarget ; 7(18): 25478-92, 2016 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-27009858

RESUMO

Cancer dormancy is a stage in tumor progression in which residual disease remains occult and asymptomatic for a prolonged period. Cancer cell dormancy is the main cause of cancer recurrence and failure of therapy. However, cancer dormancy is poorly characterized and the mechanisms of how cancer cells develop dormancy and relapse remain elusive. In this study, 5- fluorouracil (5-FU) was used to induce cancer cell dormancy. We found that cancer cells escape the cytotoxicity of 5-FU by becoming "dormant". After exposure to 5-FU, residual non-small cell lung cancer (NSCLC) cells underwent epithelial-mesenchymal transition (EMT), followed by mesenchymal-epithelial transition (MET). These EMT-transformed NSCLC cells were in the state of cell quiescence where cells were not dividing and were arrested in the cell cycle in G0-G1. The dormant cells underwent an EMT showed characteristics of cancer stem cells. P53 is strongly accumulated in response to 5-FU-induced dormant cells through the activation of ubiquitin ligase anaphase-promoting complex (APC/C) and TGF-ß/Smad signaling. In contrast to the EMT-transformed cells, MET-transformed cells showed an increased ability to proliferate, suggesting that dormant EMT cells were reactivated in the MET process. During the EMT-MET process, DNA repair including nonhomologous end joining (NHEJ) and homologous recombination (HR) is critical to dormant cell reactivation. Our findings provide a mechanism to unravel cancer cell dormancy and reactivation of the cancer cell population.


Assuntos
Ciclossomo-Complexo Promotor de Anáfase/metabolismo , Antineoplásicos/farmacologia , Carcinoma Pulmonar de Células não Pequenas/patologia , Transdiferenciação Celular/efeitos dos fármacos , Neoplasias Pulmonares/patologia , Proteína Supressora de Tumor p53/metabolismo , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Linhagem Celular Tumoral , Fluoruracila/farmacologia , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasia Residual , Estresse Fisiológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...