Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 168
Filtrar
1.
Nat Nanotechnol ; 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39043824

RESUMO

Topological defects-extended lattice deformations that are robust against local defects and annealing-have been exploited to engineer novel properties in both hard and soft materials. Yet, their formation kinetics and nanoscale three-dimensional structure are poorly understood, impeding their benefits for nanofabrication. We describe the fabrication of a pair of topological defects in the volume of a single-diamond network (space group Fd 3 ¯ m) templated into gold from a triblock terpolymer crystal. Using X-ray nanotomography, we resolve the three-dimensional structure of nearly 70,000 individual single-diamond unit cells with a spatial resolution of 11.2 nm, allowing analysis of the long-range order of the network. The defects observed morphologically resemble the comet and trefoil patterns of equal and opposite half-integer topological charges observed in liquid crystals. Yet our analysis of strain in the network suggests typical hard matter behaviour. Our analysis approach does not require a priori knowledge of the expected positions of the nodes in three-dimensional nanostructured systems, allowing the identification of distorted morphologies and defects in large samples.

2.
Expert Opin Drug Deliv ; 21(5): 695-712, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38787783

RESUMO

INTRODUCTION: Retinal drug delivery has witnessed significant advancements in recent years, mainly driven by the prevalence of retinal diseases and the need for more efficient and patient-friendly treatment strategies. AREAS COVERED: Advancements in nanotechnology have introduced novel drug delivery platforms to improve bioavailability and provide controlled/targeted delivery to specific retinal layers. This review highlights various treatment options for retinal diseases. Additionally, diverse strategies aimed at enhancing delivery of small molecules and antibodies to the posterior segment such as implants, polymeric nanoparticles, liposomes, niosomes, microneedles, iontophoresis and mixed micelles were emphasized. A comprehensive overview of the special technologies currently under clinical trials or already in the clinic was provided. EXPERT OPINION: Ideally, drug delivery system for treating retinal diseases should be less invasive in nature and exhibit sustained release up to several months. Though topical administration in the form of eye drops offers better patient compliance, its clinical utility is limited by nature of the drug. There is a wide range of delivery platforms available, however, it is not easy to modify any single platform to accommodate all types of drugs. Coordinated efforts between ophthalmologists and drug delivery scientists are necessary while developing therapeutic compounds, right from their inception.


Assuntos
Sistemas de Liberação de Medicamentos , Doenças Retinianas , Humanos , Doenças Retinianas/tratamento farmacológico , Animais , Nanotecnologia , Disponibilidade Biológica , Soluções Oftálmicas/administração & dosagem , Administração Oftálmica , Preparações Farmacêuticas/administração & dosagem , Preparações de Ação Retardada , Nanopartículas
3.
Osteoporos Sarcopenia ; 10(1): 22-27, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38690543

RESUMO

Objectives: Vertebral fracture is both common and serious among adults, yet it often goes undiagnosed. This study aimed to develop a shape-based algorithm (SBA) for the automatic identification of vertebral fractures. Methods: The study included 144 participants (50 individuals with a fracture and 94 without a fracture) whose plain thoracolumbar spine X-rays were taken. Clinical diagnosis of vertebral fracture (grade 0 to 3) was made by rheumatologists using Genant's semiquantitative method. The SBA algorithm was developed to determine the ratio of vertebral body height loss. Based on the ratio, SBA classifies a vertebra into 4 classes: 0 = normal, 1 = mild fracture, 2 = moderate fracture, 3 = severe fracture). The concordance between clinical diagnosis and SBA-based classification was assessed at both person and vertebra levels. Results: At the person level, the SBA achieved a sensitivity of 100% and specificity of 62% (95% CI, 51%-72%). At the vertebra level, the SBA achieved a sensitivity of 84% (95% CI, 72%-93%), and a specificity of 88% (95% CI, 85%-90%). On average, the SBA took 0.3 s to assess each X-ray. Conclusions: The SBA developed here is a fast and efficient tool that can be used to systematically screen for asymptomatic vertebral fractures and reduce the workload of healthcare professionals.

4.
Crit Rev Ther Drug Carrier Syst ; 41(5): 111-150, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38608134

RESUMO

Meloxicam, a selective COX-2 inhibitor, has demonstrated clinical effectiveness in managing inflammation and acute pain. Although available in oral and parenteral formulations such as capsule, tablet, suspension, and solution, frequent administration is necessary to maintain therapeutic efficacy, which can increase adverse effects and patient non-compliance. To address these issues, several sustained drug delivery strategies such as oral, transdermal, transmucosal, injectable, and implantable drug delivery systems have been developed for meloxicam. These sustained drug delivery strategies have the potential to improve the therapeutic efficacy and safety profile of meloxicam, thereby reducing the frequency of dosing and associated gastrointestinal side effects. The choice of drug delivery system will depend on the desired release profile, the target site of inflammation, and the mode of administration. Overall, meloxicam sustained delivery systems offer better patient compliance, and reduce the side effects, thereby improving the clinical applications of this drug. Herein, we discuss in detail different strategies for sustained delivery of meloxicam.


Assuntos
Dor Aguda , Analgésicos , Humanos , Meloxicam , Sistemas de Liberação de Medicamentos , Inflamação
5.
Nanomaterials (Basel) ; 14(8)2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38668166

RESUMO

Curcumin, an organic phenolic molecule that is extracted from the rhizomes of Curcuma longa Linn, has undergone extensive evaluation for its diverse biological activities in both animals and humans. Despite its favorable characteristics, curcumin encounters various formulation challenges and stability issues that can be effectively addressed through the application of nanotechnology. Nano-based techniques specifically focused on enhancing solubility, bioavailability, and therapeutic efficacy while mitigating toxicity, have been explored for curcumin. This review systematically presents information on the improvement of curcumin's beneficial properties when incorporated, either individually or in conjunction with other drugs, into diverse nanosystems such as liposomes, nanoemulsions, polymeric micelles, dendrimers, polymeric nanoparticles, solid-lipid nanoparticles, and nanostructured lipid carriers. Additionally, the review examines ongoing clinical trials and recently granted patents, offering a thorough overview of the dynamic landscape in curcumin delivery. Researchers are currently exploring nanocarriers with crucial features such as surface modification, substantial loading capacity, biodegradability, compatibility, and autonomous targeting specificity and selectivity. Nevertheless, the utilization of nanocarriers for curcumin delivery is still in its initial phases, with regulatory approval pending and persistent safety concerns surrounding their use.

6.
Anal Sci ; 40(6): 1177-1191, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38554251

RESUMO

Despite the high medicinal value of tiopronin, there are substantial adverse effects such as yellow skin, yellow eyes, muscle aches, etc. Therefore, there is a huge necessity to identify tiopronin using advanced sensors in provided samples. Recently, the preference for graphene quantum dots (GQDs) and inorganic nanomaterial-based fluorescent sensors for the detection of pharmaceuticals has been extensively documented due to their plentiful advantages. Therefore, in this work, the cobalt-doped GQDs decorated vanadium pentoxide nanosheet-based fluorescence switch 'Off-On' sensor (Co-GQDs@V2O5-NS) was designed for highly sensitive and selective detection of tiopronin. Briefly, the green synthesis of highly fluorescent Co-GQDs was carried out using a hydrothermal method. Meanwhile, the synthesis of V2O5-NS was synthesized using the liquid exfoliation method. The synthesis of Co-GQDs@V2O5-NS was accomplished wherein Co-GQDs adsorbed on the surface of V2O5-NS that offered the quenching of fluorescence of Co-GQDs. Afterward, the addition of tiopronin into the quenched probe disclosed the proportional recovery of fluorescence of Co-GQDs. Here, the addition of tiopronin provides the decomposition of V2O5-NS and conversion into the V4+ that aids in releasing the quenched fluorescence of Co-GQDs. The limit of detection and linearity range for tiopronin was found to be 1.43 ng/mL and 10-700 ng/mL, respectively. Moreover, it demonstrated high selectivity, good stability at experimental conditions, and practicality in analyzing tiopronin in spiked sample analysis. Hence, the designed Co-GQDs@V2O5-NS nanosized sensor enables high sensitivity, selectivity, simplicity, label-free, and eco-friendly tiopronin recognition. In the future, the utility of Co-GQDs@V2O5-NS can open a new door for sensing tiopronin in provided samples.


Assuntos
Cobalto , Grafite , Nanoestruturas , Pontos Quânticos , Espectrometria de Fluorescência , Compostos de Vanádio , Pontos Quânticos/química , Grafite/química , Cobalto/química , Compostos de Vanádio/química , Nanoestruturas/química , Corantes Fluorescentes/química , Corantes Fluorescentes/síntese química , Limite de Detecção
7.
Cells ; 13(5)2024 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-38474360

RESUMO

Embolism, hyperglycemia, high intraocular pressure-induced increased reactive oxygen species (ROS) production, and microglial activation result in endothelial/retinal ganglion cell death. Here, we conducted in vitro and in vivo ischemia/reperfusion (I/R) efficacy studies of a hybrid antioxidant-nitric oxide donor small molecule, SA-10, to assess its therapeutic potential for ocular stroke. METHODS: To induce I/R injury and inflammation, we subjected R28 and primary microglial cells to oxygen glucose deprivation (OGD) for 6 h in vitro or treated these cells with a cocktail of TNF-α, IL-1ß and IFN-γ for 1 h, followed by the addition of SA-10 (10 µM). Inhibition of microglial activation, ROS scavenging, cytoprotective and anti-inflammatory activities were measured. In vivo I/R-injured mouse retinas were treated with either PBS or SA-10 (2%) intravitreally, and pattern electroretinogram (ERG), spectral-domain optical coherence tomography, flash ERG and retinal immunocytochemistry were performed. RESULTS: SA-10 significantly inhibited microglial activation and inflammation in vitro. Compared to the control, the compound SA-10 significantly attenuated cell death in both microglia (43% vs. 13%) and R28 cells (52% vs. 17%), decreased ROS (38% vs. 68%) production in retinal microglia cells, preserved neural retinal function and increased SOD1 in mouse eyes. CONCLUSION: SA-10 is protective to retinal neurons by decreasing oxidative stress and inflammatory cytokines.


Assuntos
Traumatismo por Reperfusão , Células Ganglionares da Retina , Camundongos , Animais , Espécies Reativas de Oxigênio/metabolismo , Células Ganglionares da Retina/metabolismo , Traumatismo por Reperfusão/metabolismo , Isquemia/metabolismo , Anti-Inflamatórios/uso terapêutico , Inflamação/metabolismo , Reperfusão
8.
Bioengineering (Basel) ; 11(3)2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38534533

RESUMO

Despite rapid progress in tissue engineering, the repair and regeneration of bone defects remains challenging, especially for non-homogenous and complicated defects. We have developed and characterized biodegradable drug-eluting scaffolds for bone regeneration utilizing direct powder extrusion-based three-dimensional (3D) printing techniques. The PLGA scaffolds were fabricated using poly (lactic-co-glycolic acid) (PLGA) with inherent viscosities of 0.2 dl/g and 0.4 dl/g and ketoprofen. The effect of parameters such as the infill, geometry, and wall thickness of the drug carrier on the release kinetics of ketoprofen was studied. The release studies revealed that infill density significantly impacts the release performance, where 10% infill showed faster and almost complete release of the drug, whereas 50% infill demonstrated a sustained release. The Korsmeyer-Peppas model showed the best fit for release data irrespective of the PLGA molecular weight and infill density. It was demonstrated that printing parameters such as infill density, scaffold wall thickness, and geometry played an important role in controlling the release and, therefore, in designing customized drug-eluting scaffolds for bone regeneration.

9.
Biomed Pharmacother ; 173: 116275, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38394846

RESUMO

Tumour suppressor genes play a cardinal role in the development of a large array of human cancers, including lung cancer, which is one of the most frequently diagnosed cancers worldwide. Therefore, extensive studies have been committed to deciphering the underlying mechanisms of alterations of tumour suppressor genes in governing tumourigenesis, as well as resistance to cancer therapies. In spite of the encouraging clinical outcomes demonstrated by lung cancer patients on initial treatment, the subsequent unresponsiveness to first-line treatments manifested by virtually all the patients is inherently a contentious issue. In light of the aforementioned concerns, this review compiles the current knowledge on the molecular mechanisms of some of the tumour suppressor genes implicated in lung cancer that are either frequently mutated and/or are located on the chromosomal arms having high LOH rates (1p, 3p, 9p, 10q, 13q, and 17p). Our study identifies specific genomic loci prone to LOH, revealing a recurrent pattern in lung cancer cases. These loci, including 3p14.2 (FHIT), 9p21.3 (p16INK4a), 10q23 (PTEN), 17p13 (TP53), exhibit a higher susceptibility to LOH due to environmental factors such as exposure to DNA-damaging agents (carcinogens in cigarette smoke) and genetic factors such as chromosomal instability, genetic mutations, DNA replication errors, and genetic predisposition. Furthermore, this review summarizes the current treatment landscape and advancements for lung cancers, including the challenges and endeavours to overcome it. This review envisages inspired researchers to embark on a journey of discovery to add to the list of what was known in hopes of prompting the development of effective therapeutic strategies for lung cancer.


Assuntos
Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Perda de Heterozigosidade , Genes Supressores de Tumor , Mutação/genética , Transformação Celular Neoplásica/genética
10.
AAPS PharmSciTech ; 25(2): 28, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38302687

RESUMO

Cyclosporine A (CsA) is a cyclic peptide immunosuppressant drug that is beneficial in the treatment of various ocular diseases. However, its ocular bioavailability in the posterior eye is limited due to its poor aqueous solubility. Conventional CsA formulations such as a solution or emulsion permeate poorly across the eye due to various static and dynamic barriers of the eye. Dissolvable microneedle (MN)-based patches can be used to overcome barrier properties and, thus, enhance the ocular bioavailability of CsA in the posterior eye. CsA-loaded dissolvable MN patches were fabricated using polyvinylpyrrolidone (PVP) and characterized for MN uniformity and sharpness using SEM. Further characterization for its failure force, penetration force, and depth of penetration were analyzed using a texture analyzer. Finally, the dissolution time, ex vivo permeation, and ocular distribution of cyclosporine were determined in isolated porcine eyes. PVP MNs were sharp, uniform with good mechanical properties, and dissolved within 5 min. Ocular distribution of CsA in a whole porcine eye perfusion model showed a significant increase of CsA levels in various posterior segment ocular tissues as compared to a topically applied ophthalmic emulsion (Restasis®) (P < 0.001). Dissolving MNs of CsA were prepared, and the MN arrays can deliver CsA to the back of the eye offering potential for treating various inflammatory diseases.


Assuntos
Ciclosporina , Olho , Animais , Suínos , Emulsões , Imunossupressores , Sistemas de Liberação de Medicamentos
11.
Rev Med Virol ; 34(1): e2507, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38282394

RESUMO

Vaccines against coronavirus disease 2019 (COVID-19) have been discovered within a very small duration of time as compared to the traditional way for the development of vaccines, which raised the question about the safety and efficacy of the approved vaccines. The purpose of this study is to look at the effectiveness and safety of vaccine platforms against the incidence of COVID-19. The literature search was performed on PubMed/Medline, Cochrane, and clinical trials.gov databases for studies published between 1 January 2020 and 19 February 2022. Preferred Reporting Items for Systemic Review and Meta-Analysis Statement guidelines were followed. Among 284 articles received by keywords, a total of 11 studies were eligible according to the inclusion and exclusion criteria (studies in special populations, e.g., pregnant women, paediatric patients, editorials, case reports, review articles, preclinical and in vitro studies) of the study. A total of 247,186 participants were considered for randomisation at baseline, among them, 129,572 (52.42%) were provided with vaccine (Intervention group) and 117,614 (47.58%) with the placebo (Control group). A pooled fold change estimation of 0.19 (95% CI: 0.12-0.31, p < 0.0001) showed significant protection against the incidence of COVID-19 in the vaccines received group versus the placebo group. mRNA based, inactivated vaccines and non-replicating viral vector-based vaccines showed significantly protection against the incidence of COVID-19 compared to placebo with pooled fold change estimation was 0.08 (95% CI: 0.06-0.10), 0.20 (95% CI: 0.14-0.29) and 0.36 (95% CI: 0.28-0.46), respectively. Injection site discomfort and fatigue were the most common side effect observed in mRNA, non-replicating viral vector, inactivated, and protein subunit-based vaccines. All the approved vaccines were found safe and efficacious but mRNA-based vaccines were found to be more efficacious against SARS-CoV-2 than other platforms.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Humanos , COVID-19/prevenção & controle , Vacinas contra COVID-19/efeitos adversos , Vacinas contra COVID-19/uso terapêutico , Ensaios Clínicos Controlados Aleatórios como Assunto , SARS-CoV-2 , Vacinas de Produtos Inativados/efeitos adversos
12.
Pharmaceutics ; 15(12)2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-38140094

RESUMO

Orodispersible films (ODFs) are thin, mechanically strong, and flexible polymeric films that are designed to dissolve or disintegrate rapidly in the oral cavity for local and/or systemic drug delivery. This review examines various aspects of ODFs and their potential as a drug delivery system. Recent advancements, including the detailed exploration of formulation components, such as polymers and plasticizers, are briefed. The review highlights the versatility of preparation methods, particularly the solvent-casting production process, and novel 3D printing techniques that bring inherent flexibility. Three-dimensional printing technology not only diversifies active compounds but also enables a multilayer approach, effectively segregating incompatible drugs. The integration of nanoparticles into ODF formulations marks a significant breakthrough, thus enhancing the efficiency of oral drug delivery and broadening the scope of the drugs amenable to this route. This review also sheds light on the diverse in vitro evaluation methods utilized to characterize ODFs, ongoing clinical trials, approved marketed products, and recent patents, providing a comprehensive outlook of the evolving landscape of orodispersible drug delivery. Current patient-centric approaches involve developing ODFs with patient-friendly attributes, such as improved taste masking, ease of administration, and enhanced patient compliance, along with the personalization of ODF formulations to meet individual patient needs. Investigating novel functional excipients with the potential to enhance the permeation of high-molecular-weight polar drugs, fragile proteins, and oligonucleotides is crucial for rapid progress in the advancing domain of orodispersible drug delivery.

13.
AAPS PharmSciTech ; 24(7): 200, 2023 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-37783858

RESUMO

Diet-induced obesity and hyperlipidemia are a growing public health concern leading to various metabolic disorders. Capsaicin, a major bioactive compound obtained from natural chili peppers, has demonstrated its numerous beneficial roles in treating obesity and weight loss. Current treatment involves either administration of antiobesity drugs or surgical procedures such as Roux-en-Y-gastric bypass or sleeve gastrectomy, both of which are associated with serious side effects and poor patient acceptance. Capsaicin, a pungent molecule, has low oral bioavailability. Therefore, there is a need for the development of site-specific drug delivery system for capsaicin. The present study is aimed at preparing and characterizing 3D-printed capsaicin-loaded rod-shaped implants by thermoplastic extrusion-based 3D printing technology. The implants were printed with capsaicin-loaded into a biodegradable polymer, polycaprolactone, at different drug loadings and infill densities. The surface morphology revealed a smooth and uniform external surface without any capsaicin crystals. DSC thermograms showed no significant changes/exothermic events among the blends suggesting no drug polymer interactions. The in vitro release studies showed a biphasic release profile for capsaicin, and the release was sustained for more than three months (~ 85% released) irrespective of drug loading and infill densities. The HPLC method was stability-indicating and showed good resolution for its analogs, dihydrocapsaicin and nordihydrocapsaicin. The implants were stable for three months at accelerated conditions (40°C) without any significant decrease in the assay of capsaicin. Therefore, capsaicin-loaded implants can serve as a long-acting injectable formulation for targeting the adipose tissue region in obese patients.


Assuntos
Capsaicina , Obesidade , Humanos , Capsaicina/química , Obesidade/tratamento farmacológico , Sistemas de Liberação de Medicamentos , Impressão Tridimensional , Polímeros/uso terapêutico , Liberação Controlada de Fármacos
14.
ACS Omega ; 8(39): 35470-35498, 2023 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-37810716

RESUMO

In the past few decades, advancements in protein engineering, biotechnology, and structural biochemistry have resulted in the discovery of various techniques that enhanced the production yield of proteins, targetability, circulating half-life, product purity, and functionality of proteins and peptides. As a result, the utilization of proteins and peptides has increased in the treatment of many conditions, including ocular diseases. Ocular delivery of large molecules poses several challenges due to their high molecular weight, hydrophilicity, unstable nature, and poor permeation through cellular and enzymatic barriers. The use of novel strategies for delivering protein and peptides such as glycoengineering, PEGylation, Fc-fusion, chitosan nanoparticles, and liposomes have improved the efficacy, safety, and stability, which consequently expanded the therapeutic potential of proteins. This review article highlights various proteins and peptides that are useful in ocular disorders, challenges in their delivery to the eye, and strategies to enhance ocular bioavailability using novel delivery approaches. In addition, a few futuristic approaches that will assist in the ocular delivery of proteins and peptides were also discussed.

15.
AAPS PharmSciTech ; 24(7): 183, 2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37700110

RESUMO

This study presents the formulation and evaluation of an ABH Carbopol gel containing lorazepam (Ativan®), diphenhydramine hydrochloride (Benadryl®), and haloperidol (Haldol®) for treating chemotherapy-induced nausea and vomiting (CINV) in hospice patients. ABH PLO gel is widely used for this purpose due to its low cost and presumed efficacy. However, previous studies, including one conducted by the authors, have reported insufficient drug absorption from the ABH PLO gel. Here we hypothesized that the ABH Carbopol gel would provide superior percutaneous absorption of the drugs. ABH Carbopol gel was characterized for pH, viscosity, thermal properties, and infrared spectroscopy. The percutaneous absorption and skin retention of the gel was evaluated across porcine ear skin using Franz diffusion cells, and the drug concentrations were determined by high-performance liquid chromatography. The pH of the ABH Carbopol gel was found to be 6.80 ± 0.33, and the retention time of diphenhydramine, haloperidol, and lorazepam were 4.73, 7.11, and 18.69 minutes, respectively. The thermogram of the ABH Carbopol gel indicates the drugs were present in the dissolved state. Based on the flux data, the estimated steady-state concentration (Css) of diphenhydramine, haloperidol, and lorazepam were found to be 44.64 ng/ml, 2.58 ng/ml, and 20.1 ng/ml, respectively. These values were significantly higher than those obtained from the ABH PLO gel. In conclusion, the ABH Carbopol gel provides a promising alternative to the ABH PLO gel for treating CINV in hospice patients. Further studies are required to validate these findings in clinical settings.


Assuntos
Haloperidol , Absorção Cutânea , Suínos , Animais , Lorazepam , Difenidramina
16.
Med Oncol ; 40(5): 152, 2023 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-37071269

RESUMO

Lung cancer is amongst the most pervasive malignancies having high mortality rates. It is broadly grouped into non-small-cell lung cancer (NSCLC) and small-cell lung cancer (SCLC). The concept of personalized medicine has overshadowed the conventional chemotherapy given to all patients with lung cancer. The targeted therapy is given to a particular population having specific mutations to help in the better management of lung cancer. The targeting pathways for NSCLC include the epidermal growth factor receptor, vascular endothelial growth factor receptor, MET (Mesenchymal epithelial transition factor) oncogene, Kirsten rat sarcoma viral oncogene (KRAS), and anaplastic lymphoma kinase (ALK). SCLC targeting pathway includes Poly (ADP-ribose) polymerases (PARP) inhibitors, checkpoint kinase 1 (CHK 1) pathway, WEE1 pathway, Ataxia Telangiectasia and Rad3-related (ATR)/Ataxia telangiectasia mutated (ATM), and Delta-like canonical Notch ligand 3 (DLL-Immune checkpoint inhibitors like programmed cell death protein 1 (PD-1)/ programmed death-ligand 1 (PD-L1) inhibitors and Cytotoxic T-lymphocyte-associated antigen-4 (CTLA4) blockade are also utilized in the management of lung cancer. Many of the targeted therapies are still under development and require clinical trials to establish their safety and efficacy. This review summarizes the mechanism of molecular targets and immune-mediated targets, recently approved drugs, and their clinical trials for lung cancer.


Assuntos
Ataxia Telangiectasia , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Fator A de Crescimento do Endotélio Vascular , Imunoterapia , Antígeno B7-H1/metabolismo
17.
Pharmaceutics ; 15(4)2023 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-37111529

RESUMO

This study aimed to develop and evaluate nicotine--stearic acid conjugate-loaded solid lipid nanoparticles (NSA-SLNs) for transdermal delivery in nicotine replacement therapy (NRT). Nicotine conjugation to stearic acid prior to SLN formulation greatly increased drug loading. SLNs loaded with a nicotine-stearic acid conjugate were characterized for size, polydispersity index (PDI), zeta potential (ZP), entrapment efficiency, and morphology. Pilot in vivo testing was carried out in New Zealand Albino rabbits. The size, PDI, and ZP of nicotine-stearic acid conjugate-loaded SLNs were 113.5 ± 0.91 nm, 0.211 ± 0.01, and -48.1 ± 5.75 mV, respectively. The entrapment efficiency of nicotine-stearic acid conjugate in SLNs was 46.45 ± 1.53%. TEM images revealed that optimized nicotine-stearic acid conjugate-loaded SLNs were uniform and roughly spherical in shape. Nicotine-stearic acid conjugate-loaded SLNs showed enhanced and sustained drug levels for up to 96 h in rabbits when compared with the control nicotine formulation in 2% HPMC gel. To conclude, the reported NSA-SLNs could be further explored as an alternative for treating smoking cessation.

18.
Mol Genet Genomics ; 298(3): 627-651, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36933058

RESUMO

Deep-sea sediments provide important information on oceanic biogeochemical processes mediated by the microbiome and their functional roles which could be unravelled using genomic tools. The present study aimed to delineate microbial taxonomic and functional profiles from Arabian Sea sediment samples through whole metagenome sequencing using Nanopore technology. Arabian Sea is considered as a major microbial reservoir with significant bio-prospecting potential which needs to be explored extensively using recent advances in genomics. Assembly, co-assembly, and binning methods were used to predict Metagenome Assembled Genomes (MAGs) which were further characterized by their completeness and heterogeneity. Nanopore sequencing of Arabian Sea sediment samples generated around 1.73 tera basepairs of data. Proteobacteria (78.32%) was found to be the most dominant phylum followed by Bacteroidetes (9.55%) and Actinobacteria (2.14%) in the sediment metagenome. Further, 35 MAGs from assembled and 38 MAGs of co-assembled reads were generated from long-read sequence dataset with major representations from the genera Marinobacter, Kangiella, and Porticoccus. RemeDB analysis revealed a high representation of pollutant-degrading enzymes involved in hydrocarbon, plastic and dye degradation. Validation of enzymes with long nanopore reads using BlastX resulted in better characterization of complete gene signatures involved in hydrocarbon (6-monooxygenase and 4-hydroxyacetophenone monooxygenase) and dye degradation (Arylsulfatase). Enhancing the cultivability of deep-sea microbes predicted from the uncultured WGS approaches by I-tip method resulted in isolation of facultative extremophiles. This study presents a comprehensive insight into the taxonomic and functional profiles of Arabian Sea sediments, indicating a potential hotspot for bioprospection.


Assuntos
Metagenômica , Microbiota , Metagenômica/métodos , Biodegradação Ambiental , Microbiota/genética , Bactérias/genética , Hidrocarbonetos/metabolismo
19.
Pharmaceutics ; 15(3)2023 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-36986699

RESUMO

Retinal neurodegeneration is considered an early event in the pathogenesis of several ocular diseases, such as diabetic retinopathy, age-related macular degeneration, and glaucoma. At present, there is no definitive treatment to prevent the progression or reversal of vision loss caused by photoreceptor degeneration and the death of retinal ganglion cells. Neuroprotective approaches are being developed to increase the life expectancy of neurons by maintaining their shape/function and thus prevent the loss of vision and blindness. A successful neuroprotective approach could prolong patients' vision functioning and quality of life. Conventional pharmaceutical technologies have been investigated for delivering ocular medications; however, the distinctive structural characteristics of the eye and the physiological ocular barriers restrict the efficient delivery of drugs. Recent developments in bio-adhesive in situ gelling systems and nanotechnology-based targeted/sustained drug delivery systems are receiving a lot of attention. This review summarizes the putative mechanism, pharmacokinetics, and mode of administration of neuroprotective drugs used to treat ocular disorders. Additionally, this review focuses on cutting-edge nanocarriers that demonstrated promising results in treating ocular neurodegenerative diseases.

20.
Pharmaceutics ; 15(3)2023 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-36986762

RESUMO

This study aimed to develop a microemulsion formulation for topical delivery of Diacetyl Boldine (DAB) and to evaluate its cytotoxicity against melanoma cell line (B16BL6) in vitro. Using a pseudo-ternary phase diagram, the optimal microemulsion formulation region was identified, and its particle size, viscosity, pH, and in vitro release characteristics were determined. Permeation studies were performed on excised human skin using Franz diffusion cell assembly. The cytotoxicity of the formulations on B16BL6 melanoma cell lines was evaluated by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide) assay. Two formulation compositions were selected based on the higher microemulsion area of the pseudo-ternary phase diagrams. The formulations showed a mean globule size of around 50 nm and a polydispersity index of <0.2. The ex vivo skin permeation study demonstrated that the microemulsion formulation exhibited significantly higher skin retention levels than the DAB solution in MCT oil (Control, DAB-MCT). Furthermore, the formulations showed substantially higher cytotoxicity toward B16BL6 cell lines than the control formulation (p < 0.001). The half-maximal inhibitory concentrations (IC50) of F1, F2, and DAB-MCT formulations against B16BL6 cells were calculated to be 1 µg/mL, 10 µg/mL, and 50 µg/mL, respectively. By comparison, the IC50 of F1 was 50-fold lower than that of the DAB-MCT formulation. The results of the present study suggest that microemulsion could be a promising formulation for the topical administration of DAB.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...