Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 7: 46347, 2017 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-28397880

RESUMO

Pertuzumab is an antihuman HER2 antibody developed for HER2 positive breast cancer. Glycosylation profiles are always the important issue for antibody based therapy. Previous findings have suggested the impact of glycosylation profiles on the function of antibodies, like pharmacodynamics, antibody-dependent cellular cytotoxicity (ADCC) and complement-dependent cytotoxicity (CDC). However, the roles of fucose and sialic acid in the function of therapeutic antibodies still need further investigation, especially the role of sialic acid in nonfucosylated antibodies. This study focused on the pharmacokinetic and pharmacodynamic properties of pertuzumab after glycoengineering. Herein, nonfucosylated pertuzumab was produced in CHOFUT8-/- cells, and desialylated pertuzumab was generated by enzymatic hydrolysis. Present data indicated that fucose was critical for ADCC activity by influencing the interaction between pertuzumab and FcγRIIIa, nevertheless removal of sialic acid increased the ADCC and CDC activity of pertuzumab. Meanwhile, regarding to sialic acid, sialidase hydrolysis directly resulted in asialoglycoprotein receptors (ASGPRs) dependent clearance in hepatic cells in vitro. The pharmacokinetic assay revealed that co-injection of asialofetuin can protect desialylated pertuzumab against ASGPRs-mediated clearance. Taken together, the present study elucidated the importance of fucose and sialic acid for pertuzumab, and also provided further understanding of the relationship of glycosylation/pharmacokinetics/pharmacodynamics of therapeutic antibody.


Assuntos
Anticorpos Monoclonais Humanizados/química , Anticorpos Monoclonais Humanizados/farmacocinética , Antineoplásicos Imunológicos/química , Antineoplásicos Imunológicos/farmacocinética , Engenharia de Proteínas , Animais , Citotoxicidade Celular Dependente de Anticorpos , Disponibilidade Biológica , Células CHO , Linhagem Celular Tumoral , Cricetulus , Glicosilação , Humanos , Camundongos , Ligação Proteica , Processamento de Proteína Pós-Traducional , Receptor ErbB-2/antagonistas & inibidores , Proteínas Recombinantes
2.
Biomed Pharmacother ; 88: 87-94, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28095357

RESUMO

Insufficient sialylation can result in rapid clearance of therapeutic glycoproteins by intracellular degradation, which is mainly mediated by asialoglycoprotein receptors (ASGPRs) on hepatic cells. In contrast, for glycoproteins, a long half-life is often related to high level of terminal sialic acid. These could be extremely important for insufficient sialylated biomedicines in clinic, and development of therapeutic glycoproteins in laboratory. However, how the desialylated glycoproteins are removed and how to evaluate the ASGPRs mediated endocytosis in vitro needs further investigate. Herein we described an integrative characterization of ASGPRs in vitro to elucidate its endocytosis properties. The endocytosis was determined by a fluorescence-based quantization method. The results showed that the ASGPRs could bind to poorly sialylated glycoproteins including asialofetuin and low sialylated recombinant Factor VIIa with a relatively higher ASGPRs binding affinity, and induce a more rapid endocytosis in vitro. Moreover, the mechanism under the internalization of ASGPRs was also investigated, which was found to depend on clathrin and caveolin. Utilizing the relative fluorescence quantification can be suitable for measurement of insufficient sialylated glycoprotein endocytosis and quality control of therapeutic glycoproteins, which could be useful for the understanding of the development of therapeutic glycoproteins.


Assuntos
Endocitose , Fluorometria/métodos , Glicoproteínas/metabolismo , Ácido N-Acetilneuramínico/metabolismo , Animais , Receptor de Asialoglicoproteína , Assialoglicoproteínas/metabolismo , Células CHO , Caveolinas/metabolismo , Clatrina/metabolismo , Cricetinae , Cricetulus , Dinaminas/metabolismo , Endossomos/metabolismo , Fator VIIa/metabolismo , Fetuínas/metabolismo , Fluoresceína-5-Isotiocianato/metabolismo , Fluorescência , Células Hep G2 , Humanos , Lisossomos/metabolismo , Ligação Proteica , Proteínas Recombinantes/metabolismo , Reprodutibilidade dos Testes , Fatores de Tempo
3.
PLoS One ; 10(3): e0121566, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25822280

RESUMO

The participation of large-conductance Ca2+ activated K+ channels (BKs) in chloroquine (chloro)-induced relaxation of precontracted airway smooth muscle (ASM) is currently undefined. In this study we found that iberiotoxin (IbTx, a selective inhibitor of BKs) and chloro both completely blocked spontaneous transient outward currents (STOCs) in single mouse tracheal smooth muscle cells, which suggests that chloro might block BKs. We further found that chloro inhibited Ca2+ sparks and caffeine-induced global Ca2+ increases. Moreover, chloro can directly block single BK currents completely from the intracellular side and partially from the extracellular side. All these data indicate that the chloro-induced inhibition of STOCs is due to the blockade of chloro on both BKs and ryanodine receptors (RyRs). We also found that low concentrations of chloro resulted in additional contractions in tracheal rings that were precontracted by acetylcholine (ACH). Increases in chloro concentration reversed the contractile actions to relaxations. In the presence of IbTx or paxilline (pax), BK blockers, chloro-induced contractions were inhibited, although the high concentrations of chloro-induced relaxations were not affected. Taken together, our results indicate that chloro blocks BKs and RyRs, resulting in abolishment of STOCs and occurrence of contraction, the latter will counteract the relaxations induced by high concentrations of chloro.


Assuntos
Canais de Potássio Ativados por Cálcio de Condutância Alta/fisiologia , Músculo Liso/fisiologia , Animais , Bloqueadores dos Canais de Cálcio/farmacologia , Sinalização do Cálcio/efeitos dos fármacos , Cloroquina/farmacologia , Técnicas In Vitro , Canais de Potássio Ativados por Cálcio de Condutância Alta/antagonistas & inibidores , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Contração Muscular/efeitos dos fármacos , Contração Muscular/fisiologia , Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/fisiologia , Técnicas de Patch-Clamp , Peptídeos/farmacologia , Canal de Liberação de Cálcio do Receptor de Rianodina/fisiologia , Traqueia/citologia , Traqueia/fisiologia
4.
PLoS One ; 9(7): e101578, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24992312

RESUMO

Bitter tastants can induce relaxation in precontracted airway smooth muscle by activating big-conductance potassium channels (BKs) or by inactivating voltage-dependent L-type Ca2+ channels (VDLCCs). In this study, a new pathway for bitter tastant-induced relaxation was defined and investigated. We found nifedipine-insensitive and bitter tastant chloroquine-sensitive relaxation in epithelium-denuded mouse tracheal rings (TRs) precontracted with acetylcholine (ACH). In the presence of nifedipine (10 µM), ACH induced cytosolic Ca2+ elevation and cell shortening in single airway smooth muscle cells (ASMCs), and these changes were inhibited by chloroquine. In TRs, ACH triggered a transient contraction under Ca2+-free conditions, and, following a restoration of Ca2+, a strong contraction occurred, which was inhibited by chloroquine. Moreover, the ACH-activated whole-cell and single channel currents of non-selective cation channels (NSCCs) were blocked by chloroquine. Pyrazole 3 (Pyr3), an inhibitor of transient receptor potential C3 (TRPC3) channels, partially inhibited ACH-induced contraction, intracellular Ca2+ elevation, and NSCC currents. These results demonstrate that NSCCs play a role in bitter tastant-induced relaxation in precontracted airway smooth muscle.


Assuntos
Antirreumáticos/farmacologia , Cloroquina/farmacologia , Canais Iônicos/metabolismo , Relaxamento Muscular/efeitos dos fármacos , Músculo Liso/metabolismo , Acetilcolina/farmacologia , Potenciais de Ação/efeitos dos fármacos , Animais , Cálcio/metabolismo , Canais de Cálcio Tipo L/metabolismo , Células Cultivadas , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Contração Muscular/efeitos dos fármacos , Músculo Liso/citologia , Nifedipino/farmacologia , Técnicas de Patch-Clamp , Canais de Potássio/metabolismo , Pirazóis/farmacologia , Canais de Cátion TRPC/antagonistas & inibidores , Canais de Cátion TRPC/metabolismo
5.
Clin Exp Pharmacol Physiol ; 41(4): 301-8, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24552423

RESUMO

It has been reported that bitter tastants decrease blood pressure and relax precontracted vascular smooth muscle. However, the underlying mechanisms remain unclear. The aim of the present study was to determine the mechanism underlying the vasorelaxant effect of the bitter tastants. Thoracic aortic rings were isolated from Wistar rats and contractions were measured using an isometric myograph. Intracellular Ca(2+) ([Ca(2+)]i) in single rat thoracic aortic smooth muscle cells was recorded by calcium imaging. Calcium currents in single cells were recorded using patch-clamp techniques. High K(+) (140 mmol/L) induced contractions in rat thoracic aortic rings that were inhibited by 3 mmol/L chloroquine, 3 mmol/L denatonium and 10 µmol/L nifedipine. In single rat thoracic aortic smooth muscle cells, high K(+) increased [Ca(2+)]i and this effect was also blocked by 3 mmol/L chloroquine and 10 µmol/L nifedipine. Under Ca(2+) -free conditions, high K(+) failed to induce contractions in rat thoracic aortic rings. On its own, chloroquine had no effect on the muscle tension of rat aortic rings and [Ca(2+) ]i. The vasorelaxant effects of chloroquine on precontracted rat thoracic aortic rings were not altered by either 1 µg/mL pertussis toxin (PTX), an inhibitor of Gαo/i-protein, or 1 mmol/L gallein, an inhibitor of Gßγ-protein. The results of patch-clamp analysis in single cells indicate that 1 mmol/L chloroquine blocks voltage-dependent L-type Ca(2+) channel (VDLCC) currents from both extracellular and intracellular sides. Together, the results indicate that chloroquine can block VDLCC, independent of PTX- and gallein-sensitive G-proteins, resulting in relaxation of high K(+)-precontracted thoracic aortic smooth muscle.


Assuntos
Aorta Torácica/efeitos dos fármacos , Aromatizantes/farmacologia , Potássio/farmacologia , Vasoconstrição/efeitos dos fármacos , Animais , Aorta Torácica/fisiologia , Cálcio , Cloroquina/farmacologia , Toxina Pertussis/farmacologia , Ratos , Ratos Wistar , Xantenos/farmacologia
6.
Pflugers Arch ; 464(6): 671-80, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23053477

RESUMO

Airway ciliary beat activity (CBA) plays a pivotal role in protecting the body by removing mucus and pathogens from the respiratory tract. Since CBA is complicated and cannot be characterized by merely frequency, we recorded CBA using laser confocal line scanning and defined six parameters for describing CBA. The values of these parameters were all above 0 when measured in beating ciliated cells from mouse tracheae. We subsequently used 10 µM adenosine-5'-triphosphate (ATP) to stimulate ciliated cells and simultaneously recorded intracellular Ca(2+) levels and CBA. We found that intracellular Ca(2+) levels first increased, followed by an increase in CBA. Among the six parameters, frequency, amplitude, and integrated area significantly increased, whereas rise time, decay time, and full duration at half maximum markedly decreased. The results suggest that these six parameters are appropriate for assessing CBA and that increased intracellular Ca(2+) levels might enhance CBA. We next used our established methods to observe changes in mechanically stimulated cilia tips. We found that mechanical stimulation-induced changes in both intracellular Ca(2+) levels and CBA were not only similar to those induced by ATP, but were also blocked by treatment with a Ca(2+) chelator, BAPTA-AM, (10 µM) for 10 min. Moreover, while the same blockage was observed under Ca(2+)-free conditions, addition of 2 mM Ca(2+) into the chamber restored increases in both intracellular Ca(2+) levels and CBA. Taken together, we have provided a novel method for real-time measurement and complete analysis of CBA as well as demonstrated that mechanical stimulation of cilia tips resulted in Ca(2+) influx that led to increased intracellular Ca(2+) levels, which in turn triggered CBA enhancement.


Assuntos
Cálcio/fisiologia , Cílios/fisiologia , Microscopia Confocal/métodos , Traqueia/fisiologia , Trifosfato de Adenosina/metabolismo , Animais , Cálcio/metabolismo , Cílios/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Traqueia/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...