Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Res ; 212(Pt D): 113505, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35644491

RESUMO

The integration of geophysical and satellite-based monitoring techniques can yield new insights in land surface deformation (LSD) studies. In this study, we integrated the microgravity monitoring geophysical technique with Interferometry Synthetic Aperture Radar (InSAR) to reveal the possible sources of LSD changes. A microgravity survey was conducted over Al-Ain city for 1 year at one-month intervals, with time-lapse microgravity changes calculated based on the results. Over the same area of interest and time interval, InSAR analysis was performed using Sentinel-1 (C-band) data. The time-lapse microgravity changes for the whole studied period ranged from -36 to 365 µGal. The InSAR processing showed periodic land surface deformation over the area of interest varying with the season of the year. The InSAR technique detected land surface subsidence at the northeast and western parts of the study area (-7 mm/year and -8 mm/year, respectively) and land surface uplift in the central and southern parts of the study area (2 mm/year). The recorded subsidence may relate to water extraction in these areas. The integration of the two techniques showed a negative correlation, with coefficients of -0.43 and -0.39 for land surface subsidence and uplift, respectively. Furthermore, groundwater level drawdown zones were identified in the west and center of the study area. Overall, LSD is mainly stimulated by water volume exploitation in the Al-Ain region.


Assuntos
Água Subterrânea , Ausência de Peso , Água Subterrânea/análise , Interferometria/métodos , Água/análise
2.
Heliyon ; 8(1): e08776, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35146154

RESUMO

Based upon gravity measurements and calculations, the depth of the African continental crust is estimated. Taking as constraints the mass and radius of earth, and measured gravity, this theoretical method explores the use of gravitational potential to calculate the absolute gravity at three locations in Africa (e.g., Cape Town at latitude -34o, central Africa at latitude 0, and Benghazi at latitude 32o). The computational method uses as input a continental crust density ρ1 = 2.65-2.75 g/cm3 while compromising the oceanic crust density ρ2 to maintain the average crust density of the planet fixed at <ρ12> = 2.60 g/cm3. Crustal depth is assumed uniform around the earth and kept as a free parameter to adjust for the best fitting of gravity but using values of less than 100 km. A solid angle αo is a solid angle whose vertex is at the center of earth used to separate continental and oceanic crusts (αo = 10o, 20o, 35o). The results obtained for the continental crust were H = 36 km near continental edges at both Benghazi and Cape Town, whereas H = 44.4 km at the center of continent. These results are in excellent agreement with those reported by Tedla and coworkers (H = 39 ± 5 km) using an Euler deconvolution method. Our theoretical results from the developed code are also corroborated by results of numerical forward modeling supporting our code's reliability for further geoscience explorations.

4.
Environ Monit Assess ; 193(10): 631, 2021 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-34490537

RESUMO

The Mitidja alluvial aquifer in northern Algeria is an important drinking, industrial, and agricultural water source. Unfortunately, nitrate contamination has led to a decrease in water quality in several areas that benefit from this source. This study employed geographic information system and statistical modeling methods to evaluate the origin, evolution, and spatiotemporal distribution of groundwater nitrate in the aquifer and investigate the influence of different hydrogeological parameters on its extent. Control points were established across various regions of the Mitidja groundwater aquifer. A total of 1185 nitrate concentrations were measured at 316 sampling points between June 1985 and May 2015. The results showed variable rates, with the 50 mg/L nitrate consumption limit exceeded in 423 samples at 84 observation points. Statistical modeling showed that nitrate concentration was related to groundwater characteristics (aquifer nature, water table depth, and thickness of saturated zone) and human activities (land use, agricultural practices, and population density). Analysis of the nitrate distribution showed that the eastern and western watersheds experienced the greatest contamination. The significant nitrate concentrations in the eastern area were correlated with urban contamination, including uncontrolled urbanization, high population density, and industrial activity, while the primary origin of nitrate in the western area was correlated with agricultural activity, particularly fertilizers. The findings of this study can aid local government and water agencies in the development and implementation of regulations to help mitigate increases in nitrate concentrations.


Assuntos
Água Subterrânea , Poluentes Químicos da Água , Argélia , Monitoramento Ambiental , Sistemas de Informação Geográfica , Humanos , Nitratos/análise , Poluentes Químicos da Água/análise
5.
Heliyon ; 7(6): e07440, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34258463

RESUMO

Geothermal manifestations (hot springs) emerge in the Al-Mubazzarah Geothermal Area (AMGA), Al-Ain city, Abu Dhabi Emirate, United Arab Emirates. This paper presents the application and results of a Magnetotelluric (MT) survey, which was carried out in 2017 at the AMGA geothermal field. The MT method was used to investigate the variations in the electrical conductivity beneath the AMGA. This study focuses on characterizing the patterns of subsurface electrical conductivity of the AMGA geothermal reservoir. Dimensionality analysis of the measured MT data indicate that 2D inversion is appropriate for the subsurface resistivity interpretation. The inversion results support a model consisting of three resistivity-defined layers; from top to bottom they are: (1) a shallow layer with resistivity ranging from 10 to 20 Ωm, representing recent alluvial and windblown deposits, (2) a second conductive layer with resistivities less than 10 Ωm, beneath the first layer. This layer is recognized as the Tertiary carbonate sequence in the region, (3) a deep, moderate to relatively high resistive zone, 10-30 Ωm beginning at 800 m depth and reaching 4 km depth in the northern part of the profile, representing Mesozoic basement rocks. The observed moderate to high resistivity zone (10-30 Ωm) in the 2D model may represent a region where the hot groundwaters originated (geothermal reservoir), with the hottest geothermal located at a depth greater than 4 km. The geothermal reservoir zone is also represented by a low to high density contrast and a low to moderate magnetic susceptibility, as indicated in the inverted potential field data models, and confirmed the existence of a north dipping major fault.

6.
Sci Total Environ ; 767: 144330, 2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-33434848

RESUMO

The 2019 pandemic of Severe Acute Respiratory Syndrome-Corona Virus Diseases (COVID-19) has posed a substantial threat to public health and major global economic losses. The Northern Emirates of the United Arab Emirates (NEUAE) had imposed intense preventive lockdown measures. On the first of April 2020, a lockdown was implemented. It was assumed, due to lower emissions, that the air quality and Surface Urban Heat Island Intensity (SUHII) had been strengthened significantly. In this research, three parameters for Nitrogen Dioxide (NO2), Aerosol Optical Depth (AOD), and SUHII variables were examined through the NEUAE. we evaluated the percentage of the change in these parameters as revealed by satellite data for 2 cycles in 2019 (March 1st to June 30th) and 2020 (March 1st to June 30th). The core results showed that during lockdown periods, the average of NO2, AOD, and SUHII levels declined by 23.7%, 3.7%, and 19.2%, respectively, compared to the same period in 2019. Validation for results demonstrates a high agreement between the predicted and measured values. The agreement was as high as R2=0.7, R2=0.6, and R2=0.68 for NO2, AOD, and night LST, respectively, indicating significant positive linear correlations. The current study concludes that due to declining automobile and industrial emissions in the NEUAE, the lockdown initiatives substantially lowered NO2, AOD, and SUHII. In addition, the aerosols did not alter significantly since they are often linked to the natural occurrence of dust storms throughout this time of the year. The pandemic is likely to influence several policy decisions to introduce strategies to control air pollution and SUHII. Lockdown experiences may theoretically play a key role in the future as a possible solution for air pollution and SUHII abatement.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , COVID-19 , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Animais , Cidades , Controle de Doenças Transmissíveis , Monitoramento Ambiental , Temperatura Alta , Humanos , Ilhas , SARS-CoV-2 , Emirados Árabes Unidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...