Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Langmuir ; 39(43): 15222-15230, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37865920

RESUMO

Heat transfer through the interface between a metallic nanoparticle and an electrolyte solution has great importance in a number of applications, ranging from nanoparticle-based cancer treatments to nanofluids and solar energy conversion devices. However, the impact of the surface charge and dissolved ions on heat transfer has been scarcely explored so far. In this study, we compute the interface thermal conductance between hydrophilic and hydrophobic charged gold nanoparticles immersed in an electrolyte using equilibrium molecular dynamics simulations. Compared with an uncharged nanoparticle, we report a 3-fold increase of the Kapitza conductance for a nanoparticle surface charge of +320 mC/m2. This enhancement is shown to be approximately independent of the surface wettability, charge spatial distribution, and salt concentration. This allows us to express the Kapitza conductance enhancement in terms of the surface charge density on a master curve. Finally, we interpret the increase of the Kapitza conductance as a combined result of the shift of the water density distribution toward the charged nanoparticle and an accumulation of the counterions around the nanoparticle surface which increase the Coulombic interaction between the liquid and the charged nanoparticle. These considerations help us to apprehend the role of ions in heat transfer close to electrified surfaces.

2.
J Chem Phys ; 155(17): 174701, 2021 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-34742212

RESUMO

Nanofluids-dispersions of nanometer-sized particles in a liquid medium-have been proposed for a wide variety of thermal management applications. It is known that a solid-like nanolayer of liquid of typical thicknesses of 0.5-1 nm surrounding the colloidal nanoparticles can act as a thermal bridge between the nanoparticle and the bulk liquid. Yet, its effect on the nanofluid viscosity has not been elucidated so far. In this article, we compute the local viscosity of the nanolayer using equilibrium molecular dynamics based on the Green-Kubo formula. We first assess the validity of the method to predict the viscosity locally. We apply this methodology to the calculation of the local viscosity in the immediate vicinity of a metallic nanoparticle for a wide range of solid-liquid interaction strength, where a nanolayer of thickness 1 nm is observed as a result of the interaction with the nanoparticle. The viscosity of the nanolayer, which is found to be higher than its corresponding bulk value, is directly dependent on the solid-liquid interaction strength. We discuss the origin of this viscosity enhancement and show that the liquid density increment alone cannot explain the values of the viscosity observed. Rather, we suggest that the solid-like structure of the distribution of the liquid atoms in the vicinity of the nanoparticle contributes to the nanolayer viscosity enhancement. Finally, we observe a failure of the Stokes-Einstein relation between viscosity and diffusion close to the wall, depending on the liquid-solid interaction strength, which we rationalize in terms of the hydrodynamic slip.

3.
Anal Chim Acta ; 990: 121-134, 2017 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-29029735

RESUMO

The viscoelasticity effects on the reaction-diffusion rates in a Y-shaped microreactor are studied utilizing the PTT rheological model. The flow is assumed to be fully developed and considered to be created under a combined action of electroosmotic and pressure forces. In general, finite-volume-based numerical simulations are conducted to handle the problem; however, analytical solutions based on the depthwise averaging approach are also obtained for the case for which there is no reaction between the inlet components. The analytical solutions are found to predict accurate results when the width to height ratio is at least 10 and acceptable results for lower aspect ratios. An investigation of the viscoelasticity effect reveals that it is accompanied by a significant reduction of the production rate and the production efficiency, defined as the ratio of the average product concentration to the inlet concentration of the limiting reactant. In addition, this effect gives rise to a more uniform transport with more symmetric concentration distributions. The pressure effects on the reaction-diffusion rates are also pronounced in the presence of viscoelasticity. Finally, the influences of the product diffusivity are investigated for the first time revealing that the lower it is the thinner the area of significant production becomes.

4.
J Colloid Interface Sci ; 442: 8-14, 2015 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-25514643

RESUMO

The electrokinetic phenomena at high zeta potentials may show several unique features which are not normally observed. One of these features is the ionic size (steric) effect associated with the solutions of high ionic concentration. In the present work, attention is given to the influences of finite ionic size on the cross stream diffusion process in an electrokinetically actuated Y-shaped micromixer. The method consists of a finite difference based numerical approach for non-uniform grid which is applied to the dimensionless form of the governing equations, including the modified Poisson-Boltzmann equation. The results reveal that, neglecting the ionic size at high zeta potentials gives rise to the overestimation of the mixing length, because the steric effects retard liquid flow, thereby enhancing the mixing efficiency. The importance of steric effects is found to be more intense for channels of smaller width to height ratio. It is also observed that, in sharp contrast to the conditions that the ions are treated as point charges, increasing the zeta potential improves the cross stream diffusion when incorporating the ionic size. Moreover, increasing the EDL thickness decreases the mixing length, whereas the opposite is true for the channel aspect ratio.


Assuntos
Eletro-Osmose/instrumentação , Íons/química , Difusão , Desenho de Equipamento , Cinética
5.
Anal Chim Acta ; 838: 64-75, 2014 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-25064245

RESUMO

We outline a comprehensive numerical procedure for modeling of species transport and surface reaction kinetics in electrokinetically actuated microfluidic devices of rectangular cross section. Our results confirm the findings of previous simplified approaches that a concentration wave is created for sufficiently long microreactors. An analytical solution, developed for the wave propagation speed, shows that, when normalizing with the fluid mean velocity, it becomes a function of three parameters comprising the channel aspect ratio, the relative adsorption capacity, and the kinetic equilibrium constant. Our studies also reveal that the reactor geometry idealized as a slit, instead of a rectangular shape, gives rise to the underestimation of the saturation time. The extent of this underestimation increases by increasing the Damkohler number or decreasing the dimensionless Debye-Hückel parameter. Moreover, increasing the values of the Damkohler number, the dimensionless Debye-Hückel parameter, the relative adsorption capacity, and the velocity scale ratio results in lower saturation times.

6.
Appl Opt ; 52(20): 4950-8, 2013 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-23852211

RESUMO

Optical separation, which is a contactless and accurate technique, has been mostly used to manipulate single particles. This work mainly aims to present an effective technique for optical propulsion and separation of a group of microscopic particles that are suspended in liquids. An experimental study is conducted to assess the effect of radiation pressure of a high-power laser on a dilute dispersion of microparticles in water using microscopic image analysis. Results of separation experiments indicate that the manipulation mechanism is capable of sorting the microscopic particles in two size classes. Compared to common optical separators, this configuration has a benefit of separating many particles simultaneously.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...