Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(20)2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37896460

RESUMO

The fabrication of a zinc hydroxide nitrate-sodium dodecylsulfate bispyribac modified with multi-walled carbon nanotube (ZHN-SDS-BP/MWCNT) paste electrode for uric acid and bisphenol A detection was presented in this study. Electrochemical impedance spectroscopy, chronocoulometry, square-wave voltammetry, and cyclic voltammetry were all used to examine the electrocatalytic activities of modified paste electrodes. The modified electrode's sensitivity and selectivity have been considered in terms of the composition of the modifier in percentages, the types of supporting electrolytes used, the pH of the electrolyte, and square-wave voltammetry parameters like frequency, pulse size, and step increment. Square-wave voltammetry is performed by applying a small amplitude square-wave voltage to a scanning potential from -0.3 V to +1.0 V, demonstrating a quick response time and high sensitivity. The ZHN-SDS-BP/MWCNT sensor demonstrated a linear range for uric acid and bisphenol A from 5.0 µM to 0.7 mM, with a limit of detection of 0.4 µM and 0.8 µM, respectively, with good reproducibility, repeatability, and stability as well. The modified paste electrode was successfully used in the determination of uric acid and bisphenol A in samples of human urine and lake water.


Assuntos
Nanocompostos , Ácido Úrico , Humanos , Ácido Úrico/urina , Dodecilsulfato de Sódio , Reprodutibilidade dos Testes , Técnicas Eletroquímicas/métodos , Eletrodos , Nanocompostos/química , Sódio
2.
J Anal Methods Chem ; 2022: 5029036, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35463191

RESUMO

In this work, a novel electrochemical sensor was developed by electron-withdrawing substituent modification of 1-phenyl-3-methyl-4-(4-fluorobenzoyl)-5-pyrazolone on a graphene-modified glassy carbon electrode (HPMpFP-graphene/GCE) for glucose detection. The results of characterizations using a scanning electron microscope, Fourier transform infrared spectroscopy, Raman spectroscopy, and nuclear magnetic resonance spectroscopy showed the successful fabrication of HPMpFP-graphene nanocomposite, which served as an electroactive probe for glucose detection. The electron transfer ability of HPMpFBP-graphene/GCE has been successfully revealed using cyclic voltammetry and electrochemical impedance spectroscopy results. The good electrochemical performance was shown by well-defined peak currents of square wave voltammetry under various parameters, including pH, HPMpFP and graphene composition, and scan rate effect. A high electrochemically evaluated surface area using chronoamperometry suggested that the present glucose detection response was intensified. The chronoamperometry results at a work potential of 0.4 V presented a wide linear range of 1 × 103-90 µM and 88-1 µM with 0.74 µM (S/N = 3) as the detection limit. An acceptable recovery has been revealed in the real sample analysis. The electrochemical sensing behaviour of the composite indicates that it may be a promising candidate for a glucose sensor and it significantly extends the range of applications in the electrochemical field.

3.
Sensors (Basel) ; 19(4)2019 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-30813385

RESUMO

This paper presents the application of zinc/aluminium-layered double hydroxide-quinclorac (Zn/Al-LDH-QC) as a modifier of multiwalled carbon nanotubes (MWCNT) paste electrode for the determination of bisphenol A (BPA). The Zn/Al-LDH-QC/MWCNT morphology was examined by a transmission electron microscope and a scanning electron microscope. Electrochemical impedance spectroscopy was utilized to investigate the electrode interfacial properties. The electrochemical responses of the modified electrode towards BPA were thoroughly evaluated by using square-wave voltammetry technique. The electrode demonstrated three linear plots of BPA concentrations from 3.0 × 10-8⁻7.0 × 10-7 M (R² = 0.9876), 1.0 × 10-6⁻1.0 × 10-5 M (R² = 0.9836) and 3.0 × 10-5⁻3.0 × 10-4 M (R² = 0.9827) with a limit of detection of 4.4 × 10-9 M. The electrode also demonstrated good reproducibility and stability up to one month. The presence of several metal ions and organic did not affect the electrochemical response of BPA. The electrode is also applicable for BPA determination in baby bottle and mineral water samples with a range of recovery between 98.22% and 101.02%.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...