Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Oecologia ; 196(3): 863-875, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34170396

RESUMO

Microbial processes play a central role in controlling the availability of N in temperate forests. While bacteria, archaea, and fungi account for major inputs, transformations, and exports of N in soil, relationships between microbial community structure and N cycle fluxes have been difficult to detect and characterize. Several studies have reported differences in N cycling based on mycorrhizal type in temperate forests, but associated differences in N cycling genes underlying these fluxes are not well-understood. We explored how rates of soil N cycle fluxes vary across gradients of mycorrhizal abundance (hereafter "mycorrhizal gradients") at four temperate forest sites in Massachusetts and Indiana, USA. We paired measurements of N-fixation, net nitrification, and denitrification rates with gene abundance data for specific bacterial functional groups associated with each process. We find that the availability of NO3 and rates of N-fixation, net nitrification, and denitrification are reduced in stands dominated by trees associated with ECM fungi. On average, rates of N-fixation and denitrification in stands dominated by trees associated with arbuscular mycorrhizal fungi were more than double the corresponding rates in stands dominated by trees associated with ectomycorrhizal fungi. Despite the structuring of flux rates across the mycorrhizal gradients, we did not find concomitant shifts in the abundances of N-cycling bacterial genes, and gene abundances were not correlated with process rates. Given that AM-associating trees are replacing ECM-associating trees throughout much of the eastern US, our results suggest that shifts in mycorrhizal dominance may accelerate N cycling independent of changes in the relative abundance of N cycling bacteria, with consequences for forest productivity and N retention.


Assuntos
Micorrizas , Bactérias , Florestas , Nitrogênio , Solo , Microbiologia do Solo , Árvores
2.
Nat Commun ; 10(1): 3568, 2019 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-31395870

RESUMO

Respiration by soil bacteria and fungi is one of the largest fluxes of carbon (C) from the land surface. Although this flux is a direct product of microbial metabolism, controls over metabolism and their responses to global change are a major uncertainty in the global C cycle. Here, we explore an in silico approach to predict bacterial C-use efficiency (CUE) for over 200 species using genome-specific constraint-based metabolic modeling. We find that potential CUE averages 0.62 ± 0.17 with a range of 0.22 to 0.98 across taxa and phylogenetic structuring at the subphylum levels. Potential CUE is negatively correlated with genome size, while taxa with larger genomes are able to access a wider variety of C substrates. Incorporating the range of CUE values reported here into a next-generation model of soil biogeochemistry suggests that these differences in physiology across microbial taxa can feed back on soil-C cycling.


Assuntos
Bactérias/metabolismo , Ciclo do Carbono , Modelos Biológicos , Microbiologia do Solo , Bactérias/genética , Biomassa , Carbono/metabolismo , Simulação por Computador , Genoma Bacteriano , Metaboloma/genética , Metabolômica/métodos
3.
Environ Entomol ; 43(2): 393-401, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24763096

RESUMO

Given that many pollinators have exhibited dramatic declines related to habitat destruction, an improved understanding of pollinator resource collection across human-altered landscapes is essential to conservation efforts. Despite the importance of bumble bees (Bombus spp.) as global pollinators, little is known regarding how pollen collection patterns vary between individuals, colonies, and landscapes. In this study, Vosnesensky bumble bees (Bombus vosnesenskii Radoszkowski) were collected from a range of human-altered and natural landscapes in northern California. Extensive vegetation surveys and Geographic Information System (GIS)-based habitat classifications were conducted at each site, bees were genotyped to identify colony mates, and pollen loads were examined to identify visited plants. In contrast to predictions based on strong competitive interactions, pollen load composition was significantly more similar for bees captured in a shared study region compared with bees throughout the research area but was not significantly more similar for colony mates. Preference analyses revealed that pollen loads were not composed of the most abundant plant species per study region. The majority of ranked pollen preference lists were significantly correlated for pairwise comparisons of colony mates and individuals within a study region, whereas the majority of pairwise comparisons of ranked pollen preference lists between individuals located at separate study regions were uncorrelated. Results suggest that pollen load composition and foraging preferences are similar for bees throughout a shared landscape regardless of colony membership. The importance of native plant species in pollen collection is illustrated through preference analyses, and we suggest prioritization of specific rare native plant species for enhanced bumble bee pollen collection.


Assuntos
Comportamento Apetitivo/fisiologia , Abelhas/fisiologia , Ecossistema , Polinização/fisiologia , Análise de Variância , Animais , Abelhas/genética , California , Genótipo , Sistemas de Informação Geográfica , Reação em Cadeia da Polimerase Multiplex
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...