Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Bioinform ; 2: 788607, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36304310

RESUMO

Effective visualisation of quantitative microscopy data is crucial for interpreting and discovering new patterns from complex bioimage data. Existing visualisation approaches, such as bar charts, scatter plots and heat maps, do not accommodate the complexity of visual information present in microscopy data. Here we develop ShapoGraphy, a first of its kind method accompanied by an interactive web-based application for creating customisable quantitative pictorial representations to facilitate the understanding and analysis of image datasets (www.shapography.com). ShapoGraphy enables the user to create a structure of interest as a set of shapes. Each shape can encode different variables that are mapped to the shape dimensions, colours, symbols, or outline. We illustrate the utility of ShapoGraphy using various image data, including high dimensional multiplexed data. Our results show that ShapoGraphy allows a better understanding of cellular phenotypes and relationships between variables. In conclusion, ShapoGraphy supports scientific discovery and communication by providing a rich vocabulary to create engaging and intuitive representations of diverse data types.

2.
Comput Struct Biotechnol J ; 18: 2501-2509, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33005312

RESUMO

Changes in tissue architecture and multicellular organisation contribute to many diseases, including cancer and cardiovascular diseases. Scratch wound assay is a commonly used tool that assesses cells' migratory ability based on the area of a wound they cover over a certain time. However, analysis of changes in the organisational patterns formed by migrating cells following genetic or pharmacological perturbations are not well explored in these assays, in part because analysing the resulting imaging data is challenging. Here we present DeepScratch, a neural network that accurately detects the cells in scratch assays based on a heterogeneous set of markers. We demonstrate the utility of DeepScratch by analysing images of more than 232,000 lymphatic endothelial cells. In addition, we propose various topological measures of cell connectivity and local cell density (LCD) to characterise tissue remodelling during wound healing. We show that LCD-based metrics allow classification of CDH5 and CDC42 genetic perturbations that are known to affect cell migration through different biological mechanisms. Such differences cannot be captured when considering only the wound area. Taken together, single-cell detection using DeepScratch allows more detailed investigation of the roles of various genetic components in tissue topology and the biological mechanisms underlying their effects on collective cell migration.

3.
Sci Rep ; 10(1): 13829, 2020 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-32796870

RESUMO

Angiogenesis plays a key role in several diseases including cancer, ischemic vascular disease, and Alzheimer's disease. Chemical genetic screening of endothelial tube formation provides a robust approach for identifying signalling components that impact microvascular network morphology as well as endothelial cell biology. However, the analysis of the resulting imaging datasets has been limited to a few phenotypic features such as the total tube length or the number of branching points. Here we developed a high content analysis framework for detailed quantification of various aspects of network morphology including network complexity, symmetry and topology. By applying our approach to a high content screen of 1,280 characterised drugs, we found that drugs that result in a similar phenotype share the same mechanism of action or common downstream signalling pathways. Our multiparametric analysis revealed that a group of glutamate receptor antagonists enhances branching and network connectivity. Using an integrative meta-analysis approach, we validated the link between these receptors and angiogenesis. We further found that the expression of these genes is associated with the prognosis of Alzheimer's patients. In conclusion, our work shows that detailed image analysis of complex endothelial phenotypes can reveal new insights into biological mechanisms modulating the morphogenesis of endothelial networks and identify potential therapeutics for angiogenesis-related diseases.


Assuntos
Células Endoteliais/patologia , Morfogênese , Neovascularização Patológica/genética , Receptores de Glutamato/fisiologia , Doença de Alzheimer/etiologia , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Células Cultivadas , Humanos , Transdução de Sinais
4.
Mol Syst Biol ; 16(3): e9083, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32141232

RESUMO

Characterising context-dependent gene functions is crucial for understanding the genetic bases of health and disease. To date, inference of gene functions from large-scale genetic perturbation screens is based on ad hoc analysis pipelines involving unsupervised clustering and functional enrichment. We present Knowledge- and Context-driven Machine Learning (KCML), a framework that systematically predicts multiple context-specific functions for a given gene based on the similarity of its perturbation phenotype to those with known function. As a proof of concept, we test KCML on three datasets describing phenotypes at the molecular, cellular and population levels and show that it outperforms traditional analysis pipelines. In particular, KCML identified an abnormal multicellular organisation phenotype associated with the depletion of olfactory receptors, and TGFß and WNT signalling genes in colorectal cancer cells. We validate these predictions in colorectal cancer patients and show that olfactory receptors expression is predictive of worse patient outcomes. These results highlight KCML as a systematic framework for discovering novel scale-crossing and context-dependent gene functions. KCML is highly generalisable and applicable to various large-scale genetic perturbation screens.


Assuntos
Neoplasias Colorretais/patologia , Redes Reguladoras de Genes , Biologia de Sistemas/métodos , Linhagem Celular Tumoral , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Regulação Neoplásica da Expressão Gênica , Células HCT116 , Humanos , Células MCF-7 , Gradação de Tumores , Fenótipo , Prognóstico , Receptores Odorantes/genética , Transdução de Sinais , Máquina de Vetores de Suporte , Fator de Crescimento Transformador beta/genética , Via de Sinalização Wnt
5.
Oncotarget ; 11(5): 535-549, 2020 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-32082487

RESUMO

Gastric cancer (GC) remains the third leading cause of cancer-related death despite several improvements in targeted therapy. There is therefore an urgent need to investigate new treatment strategies, including the identification of novel biomarkers for patient stratification. In this study, we evaluated the effect of FDA-approved kinase inhibitors on GC. Through a combination of cell growth, migration and invasion assays, we identified dasatinib as an efficient inhibitor of GC proliferation. Mass-spectrometry-based selectivity profiling and subsequent knockdown experiments identified members of the SRC family of kinases including SRC, FRK, LYN and YES, as well as other kinases such as DDR1, ABL2, SIK2, RIPK2, EPHA2, and EPHB2 as dasatinib targets. The expression levels of the identified kinases were investigated on RNA and protein level in 200 classified tumor samples from patients, who had undergone gastrectomy, but had received no treatment. Levels of FRK, DDR1 and SRC expression on both mRNA and protein level were significantly higher in metastatic patient samples regardless of the tumor stage, while expression levels of SIK2 correlated with tumor size. Collectively, our data suggest dasatinib for treatment of GC based on its unique property, inhibiting a small number of key kinases (SRC, FRK, DDR1 and SIK2), highly expressed in GC patients.

6.
Genome Res ; 27(2): 196-207, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27864353

RESUMO

The associations between clinical phenotypes (tumor grade, survival) and cell phenotypes, such as shape, signaling activity, and gene expression, are the basis for cancer pathology, but the mechanisms explaining these relationships are not always clear. The generation of large data sets containing information regarding cell phenotypes and clinical data provides an opportunity to describe these mechanisms. Here, we develop an image-omics approach to integrate quantitative cell imaging data, gene expression, and protein-protein interaction data to systematically describe a "shape-gene network" that couples specific aspects of breast cancer cell shape to signaling and transcriptional events. The actions of this network converge on NF-κB, and support the idea that NF-κB is responsive to mechanical stimuli. By integrating RNAi screening data, we identify components of the shape-gene network that regulate NF-κB in response to cell shape changes. This network was also used to generate metagene models that predict NF-κB activity and aspects of morphology such as cell area, elongation, and protrusiveness. Critically, these metagenes also have predictive value regarding tumor grade and patient outcomes. Taken together, these data strongly suggest that changes in cell shape, driven by gene expression and/or mechanical forces, can promote breast cancer progression by modulating NF-κB activation. Our findings highlight the importance of integrating phenotypic data at the molecular level (signaling and gene expression) with those at the cellular and tissue levels to better understand breast cancer oncogenesis.


Assuntos
Neoplasias da Mama/genética , NF-kappa B/genética , Proteína Smad3/genética , Fator de Transcrição RelA/genética , Neoplasias da Mama/patologia , Forma Celular/genética , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Transdução de Sinais , Transcrição Gênica
7.
Mol Biosyst ; 13(1): 92-105, 2016 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-27824369

RESUMO

Localisation and protein function are intimately linked in eukaryotes, as proteins are localised to specific compartments where they come into proximity of other functionally relevant proteins. Significant co-localisation of two proteins can therefore be indicative of their functional association. We here present COLA, a proteomics based strategy coupled with a bioinformatics framework to detect protein-protein co-localisations on a global scale. COLA reveals functional interactions by matching proteins with significant similarity in their subcellular localisation signatures. The rapid nature of COLA allows mapping of interactome dynamics across different conditions or treatments with high precision.


Assuntos
Mapeamento de Interação de Proteínas/métodos , Mapas de Interação de Proteínas , Proteoma , Proteômica , Fracionamento Celular , Linhagem Celular , Cromatografia Líquida , Análise por Conglomerados , Humanos , Espaço Intracelular/metabolismo , Espectrometria de Massas , Ligação Proteica , Transporte Proteico , Proteômica/métodos , Sensibilidade e Especificidade , Frações Subcelulares
8.
Crit Rev Biochem Mol Biol ; 51(2): 96-101, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26906253

RESUMO

Data visualization is a fundamental aspect of science. In the context of microscopy-based studies, visualization typically involves presentation of the images themselves. However, data visualization is challenging when microscopy experiments entail imaging of millions of cells, and complex cellular phenotypes are quantified in a high-content manner. Most well-established visualization tools are inappropriate for displaying high-content data, which has driven the development of new visualization methodology. In this review, we discuss how data has been visualized in both classical and high-content microscopy studies; as well as the advantages, and disadvantages, of different visualization methods.


Assuntos
Microscopia , Linhagem Celular Tumoral , Humanos
9.
Nat Commun ; 6: 5825, 2015 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-25569359

RESUMO

Visualization is essential for data interpretation, hypothesis formulation and communication of results. However, there is a paucity of visualization methods for image-derived data sets generated by high-content analysis in which complex cellular phenotypes are described as high-dimensional vectors of features. Here we present a visualization tool, PhenoPlot, which represents quantitative high-content imaging data as easily interpretable glyphs, and we illustrate how PhenoPlot can be used to improve the exploration and interpretation of complex breast cancer cell phenotypes.


Assuntos
Neoplasias da Mama/ultraestrutura , Células/ultraestrutura , Processamento de Imagem Assistida por Computador/métodos , Software , Linhagem Celular Tumoral , Feminino , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...