Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biometals ; 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38805106

RESUMO

This study investigates the correlation between the biomedical and structural properties of Zn/Sr-modified Calcium Phosphates (ZnSr-CaPs) synthesized via the sol-gel combustion method. X-ray diffraction (XRD) analysis revealed the presence of Ca10(PO4)6(OH)2 (HAp), CaCO3, and Ca(OH)2 phases in the undoped sample, while the additional phase, Ca3(PO4)2 (ß-TCP) was formed in modified samples. X-ray absorption near-edge structure (XANES) analysis demonstrated the incorporation of Sr into the lattice, with a preference for occupying the Ca1 sites in the HAp matrix. The introduction of Zn, furthermore, led to the formation of ZnO and CaZnO2 species. The ZnSr-CaPs exhibited significant antibacterial activity attributed to the generation of reactive oxygen species by ZnO, the oxidation reaction of CaZnO2, and the presence of Sr ions. Cytotoxicity tests revealed a correlation between the variation in ZnO content and cellular viability, with lower ZnO concentrations corresponding to higher cell viability. Additionally, the cooperative effects of Zn and Sr ions were found to enhance the bioactivity of CaPs, despite ZnO hindering the apatite formation process. These findings contribute to the deep understanding of the diverse role in modulating the antibacterial, cytotoxic, and bioactive properties of ZnSr-CaPs, offering potential applications in the field of biomaterials.

2.
RSC Adv ; 14(7): 4614-4622, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38318621

RESUMO

The comprehensive control of hydroxyapatite (HAp), involving morphological and structural variations, particle sizes, and defect formations, has garnered considerable attention for its versatile functionalities, rendering it applicable in diverse contexts. This work examined the shape, structure and optical characteristics, and defect formation in hydroxyapatite (HAp) extracted from Nile tilapia (Oreochromis niloticus) scales with various pre-treatments through experiments and density functional theory (DFT) calculations. Utilizing scanning electron microscopy, our findings revealed that dried fish scales (FS-D) exhibited a layered pattern of collagen fibers, while boiled fish scales (FS-B) had smoother surfaces and significantly reduced collagen content. After calcination, the FS-D sample produced nanorods with an average length of 150 ± 44 nm, whereas the FS-B samples yielded agglomerated spherical particles whose size increased with the rising calcining temperature. In-depth analysis through X-ray diffraction and Fourier-transform infrared spectroscopy confirmed the presence of biphasic calcium phosphates in the FS-B samples, while the FS-D sample presented a pure HAp phase. The boiled fish scale calcined at 800 °C (FS-B800) exhibited an optical band gap (Eg) of 5.50 eV, whereas the dried fish scale calcined at 800 °C (FS-D800) showed two Eg values of 2.87 and 3.97 eV, as determined by UV-visible spectroscopy. DFT calculations revealed that the band gap of 3.97 eV correlated with OH- vacancies, while that of 2.87 eV indicated Mn-substituted HAp, explaining the blue powder. The Eg value for the white powder resembled pure HAp, S- and Cl- substituted OH- vacancies, and various cations substituting Ca sites of HAp. Different pre-treatment procedures influence the characteristics of HAp, offering opportunities for applications in bone replacement and scaffolds for bone tissue engineering.

3.
Sci Rep ; 12(1): 10063, 2022 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-35710801

RESUMO

We investigated the effects of both intrinsic defects and hydrogen atom impurities on the magnetic properties of MgO samples. MgO in its pure defect-free state is known to be a nonmagnetic semiconductor. We employed density-functional theory and the Heyd-Scuseria-Ernzerhof (HSE) density functional. The calculated formation energy and total magnetic moment indicated that uncharged [Formula: see text] and singly charged [Formula: see text] magnesium vacancies are more stable than oxygen vacancies (VO) under O-rich growth conditions and introduce a magnetic moment to MgO. The calculated density of states (DOS) results demonstrated that magnetic moments of VMg result from spin polarization of an unpaired electron of the partially occupied valence band, which is dominated by O 2p orbitals. Based on our calculations, VMg is the origin of magnetism and ferromagnetism in MgO. In contrast, the magnetic moment of the magnetic VMg-MgO crystal is suppressed by hydrogen (H) atoms, and unpaired electrons are donated to the unpaired electronic states of VMg when the defect complex Hi-VMg is formed. This suggests that H causes a reduction in magnetization of the ferromagnetic MgO. We then performed experimental studies to verify the DFT predictions by subjecting the MgO sample to a thermal treatment that creates Mg vacancies in the structure and intentionally doping the MgO sample with hydrogen atoms. We found good agreement between the DFT results and the experimental data. Our findings suggest that the ferromagnetism and diamagnetism of MgO can be controlled by heat treatment and hydrogen doping, which may find applications in magnetic sensing and switching under different environmental conditions.

4.
Phys Chem Chem Phys ; 18(42): 29561-29570, 2016 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-27748475

RESUMO

Water electrolysis is a key technology for the replacement of fossil fuels by environmentally friendly alternatives, but state-of-the-art water oxidation catalysts rely on rare elements such as Pt groups and other noble metals. In this article, we employ first-principles calculations to explore the potential of modified barium titanate (BaTiO3), an inexpensive perovskite oxide that can be synthesized from earth-abundant precursors, for the design of efficient water oxidation electrocatalysts. Our calculations identify Fe and Ni doping as a means to improve the electrical conductivity and to reduce the overpotential required for water oxidation over BaTiO3. Based on computed Pourbaix diagrams and pH/potential-dependent surface phase diagrams, we further show that BaTiO3 is stable under reaction conditions and is not sensitive with respect to poisoning by reaction intermediates and hydrogen adsorption. This proof of concept demonstrates that even minor compositional modifications of existing materials may greatly improve their catalytic activity, a fact that is often neglected when larger composition spaces are screened.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...