Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 1291, 2024 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-38221530

RESUMO

Human Vγ9Vδ2 T lymphocytes are regarded as promising effector cells for cancer immunotherapy since they have the ability to eliminate several tumor cells through non-peptide antigen recognition. However, the cytotoxic function and the mechanism of Vγ9Vδ2 T cells leading to specific killing of cholangiocarcinoma cells are yet to be confirmed. In this study, we established a protocol for ex vivo expansion of Vγ9Vδ2 T cells from healthy donors' peripheral blood mononuclear cells by culture with zoledronate and addition of IL-2, and IL-15 or IL-18 or neither. Testing the cytotoxic capacity of cultured Vγ9Vδ2 T cells against cholangiocarcinoma cell lines showed higher reactivity than against control cells. Surface expression of CD107 was detected on the Vγ9Vδ2 T cells, suggesting that these cells limit in vitro growth of cholangiocarcinoma cells via degranulation of the perforin and granzyme pathway. Analysis of molecular signaling was used to demonstrate expression of pro- and anti-survival genes and a panel of cytokine genes in Vγ9Vδ2 T cells. We found that in the presence of either IL-15 or IL-18, levels of caspase 3 were significantly reduced. Also, IL-15 and IL-18 stimulated cells contained cytotoxicity against cholangiocarcinoma cells, suggesting that stimulated Vγ9Vδ2 T cells may provide a feasible therapy for cholangiocarcinoma.


Assuntos
Antineoplásicos , Colangiocarcinoma , Humanos , Interleucina-15/farmacologia , Interleucina-18 , Leucócitos Mononucleares/metabolismo , Receptores de Antígenos de Linfócitos T gama-delta/metabolismo , Linfócitos T , Ativação Linfocitária
2.
Biotechnol Rep (Amst) ; 32: e00677, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34631437

RESUMO

PCR detection of enterotoxigenic Escherichia-coli (ETEC) can be used directly on stool sample. However, it still has limitations due to presence of PCR inhibitors and interferences. This study, oligonucleotide primer specific to ETEC was immobilized onto MNPs and applied for separation and enrichment of ETEC-DNA from contaminants in stool after boiling. DNA separation efficiency was evaluated using conventional PCR and magneto-PCR-enzyme linked-gene-assay (MELGA). Due to high specificity of primer and efficiency of nanoparticles to bring down PCR inhibitors, DNA separation using primer-immobilized-MNPs exhibited 100-fold increase of sensitivity compared to that using simple boiling. Moreover, the sensitivities in stool were increased from 108 to 106 CFU/mL and 104 to 102 CFU/mL when PCR products were detected by gel electrophoresis and MELGA, respectively. Results suggested that oligonucleotide-immobilized-MNPs combined with boiling DNA extraction method was successfully used to separate the DNA of ETEC in stool with high sensitivity using MELGA.

3.
RSC Adv ; 11(41): 25199-25206, 2021 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-35478920

RESUMO

Iodine-131 meta-iodobenzylguanidine (131I-mIBG) has been utilized as a standard treatment to minimize adverse side effects by targeting therapies to bind to the norepinephrine transporter (NET) expressed on 90% of neuroblastoma cells. However, only a minority of patients who receive 131I-mIBG radiotherapy have clinical responses, and these are usually not curative. In this study, novel ligand-conjugated gold nanoparticles (GNPs) based on mIBG were synthesized and evaluated biologically with neuroblastoma cells in vitro. To induce specific internalization to the tumor cells and utilize it as a model for radioenhancement, 127I-modified mIBG was successfully synthesized and grafted covalently to the surface of carboxylated PEG-GNPs. 49.28% of the novel mIBG derivative was grafted on carboxylated PEG-GNPs. The particles were stable and not toxic to the normal fibroblast cell line, L929, even at the highest concentration tested (1013 NPs per mL) at 24, 48, and 72 h. Moreover, the cellular uptake of the model was decreased significantly in the presence of a NET inhibitor, suggesting that there was specific internalization into neuroblastoma cells line (SH-SY5Y) via the NET. Therefore, this model provides useful guidance toward the design of gold nanomaterials to enhance the efficiency of 131I-mIBG treatment in neuroblastoma patients. However, the investigation of radio-therapeutic efficiency after radioisotope 131I substitution will be further conducted in a radiation safety laboratory using an animal model.

4.
Asian Pac J Cancer Prev ; 18(2): 473-477, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-28345832

RESUMO

Background: Metformin is an oral anti-diabetic agent that has been widely prescribed for treatment of type II diabetes. Anti-cancer properties of metformin have been revealed for numerous human malignancies including cholangiocarcinoma (CCA) with anti-proliferative effects in vitro. However, effects on CCA cell migration and invasion have not been fully investigated. The present study aimed to explore the inhibitory effects of metformin on motility, migration and invasion of the CCA cell line HuCCT1, and examine molecular mechanisms underlying metformin effects. Methods: HuCCT1 cells were exposed to increasing doses of metformin. Viability and growth of HuCCT1 cells were assessed by MTS and colony formation assays, respectively. Motility, migration and invasion of metformin-treated HuCCT1 cells were determined in vitro using wound healing, transwell migration and matrigel invasion assays. Expression of signaling molecules and epithelial-mesenchymal transition (EMT) markers was assessed by Western blotting. Results: It was observed that metformin significantly decreased HuCCT1 cell viability and colony formation. The agent also markedly reduced wound closure, migration and invasion of HuCCT1 cells. Furthermore, metformin exposure resulted in decreased STAT3 activation and down-regulation of anti-apoptotic protein Bcl-2 and Mcl-1 expression. In addition, it upregulated the expression of E-cadherin, while downregulating that of N-cadherin, Snail, and MMP-2. Conclusion: These results demonstrated inhibitory effects of metformin on CCA cell migration and invasion, possibly involving the STAT3 pathway and reversal of EMT markers expression. They further suggest that metformin may be useful for CCA management.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...