Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanoscale ; 12(2): 669-686, 2020 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-31829381

RESUMO

Herein, we present the cationic impurity-assisted band offset phenomena in NixCd1-xO (x = 0, 0.02, 0.05, 0.1, 0.2, 0.4, 0.8, and 1) thin films and further discuss them based on orbital hybridization modification. The compositional and structural studies revealed that the cationic substitution of Cd2+ by Ni2+ ions leads to a monotonic shift in the (220) diffraction peak, indicating the suppression of lattice distortion, while the evolution of local strain with an increase in Ni concentration is mainly associated with the mismatch in the electronegativity of the Cd2+ and Ni2+ ions. In fact, Fermi level pinning towards the conduction band minimum takes place with an increase in the Ni concentration at the cost of electronically compensated oxygen vacancies, resulting in the modification of the distribution of carrier concentration, which eventually affects the band edge effective mass of the conduction band electrons and further endorses band gap renormalization. Besides, the appearance of a longitudinal optical (LO) mode at 477 cm-1, as manifested by Raman spectroscopy, also indicates the active involvement of electron-phonon scattering, whereas modification in the local coordination environment, particularly anti-crossing interaction in conjunction with the presence of satellite features and shake-up states with Ni doping, was confirmed by X-ray absorption near-edge and X-ray photoelectron spectroscopy studies. These results manifest the gradual reduction of orbital hybridization upon the incorporation of Ni, leading to a decrement in the band edge effective electron mass. Finally, the molecular dynamics simulation reflected a 13% reduction in the lattice parameter for the NiO thin film compared to the undoped film, while the projected density of states calculation further supports the experimental observation of reduced orbital hybridization with an increase in Ni concentration.

2.
Nanoscale ; 11(31): 14802-14819, 2019 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-31355382

RESUMO

Herein, a high temperature-induced phase transformation (PT) in chemically grown CdO thin films is demonstrated, and its corresponding electronic origin further investigated by density functional theory. In particular, the cubic rocksalt to hexagonal wurtzite PT in the CdO thin film annealed at 900 °C was confirmed by X-ray diffraction (XRD), which was consistent with the high-resolution transmission electron microscopy (TEM) results. Moreover, atomic force microscopy and scanning electron microscopy clearly evidenced the morphological evolution via the formation of a nanosheet network in the wurtzite-phase CdO film. The high temperature treatment also led to a significant enhancement in the optical band gap from 2.2 to 3.2 eV, as manifested by UV-visible spectroscopy. The enhanced surface roughness of the nanosheet caused a deviation in the net dipole moment, which may break the polarizable bonds and help in reducing the average dielectric constant, resulting in a band gap opening for the transformed phase. Furthermore, X-ray absorption spectroscopy at the oxygen k-edge revealed a notable shift in the inflection point of the absorption edge, while the X-ray photoelectron spectroscopy (XPS) Cd 3d and O 1s spectra suggested a gradual reduction in the CdO2 phase with an increase in annealing temperature. In addition, different complementary techniques including Rutherford backscattering and Raman spectroscopy were exploited to understand the aforementioned PT and its structural correlation. Finally, molecular dynamics simulation together with density functional theory calculation suggested that the symmetry modification at the Brillouin zone boundary provides a succinct signature for the PT in the CdO thin film.

3.
Biochem Pharmacol ; 129: 26-42, 2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-28017772

RESUMO

Visceral Leishmaniasis is a deadly parasitic disease caused by Leishmania donovani. Paucity exists in the discovery of novel chemotherapeutics against Leishmaniasis. In this study, we synthesized a natural product inspired Diversity Oriented Synthesis library of L. donovani Trypanothione reductase (LdTR) inhibitor ß-carboline-quinazolinone hybrids, which are different in stereochemical architecture and diverse in the bioactive chemical space. It is noteworthy that chirality affects drug-to-protein binding affinity since proteins in any living system are present only in one of the chiral forms. Upon evaluation of the hybrids, one of the chiral forms i.e. Compound 1 showed profound cytotoxic effect in micromolar range as compared to its other chiral form i.e. Compound 2. In-silico docking studies confirmed high binding efficiency of Compound 1 with the catalytic pocket of LdTR. Treatment of L. donovani parasites with Compound 1 inhibits LdTR activity, induces imbalance in redox homeostasis by enhancing ROS, disrupts the mitochondrial membrane potential, modifies actin polymerization and alters the surface topology and architecture. All these cellular modifications eventually led to apoptosis-like death of promastigotes. Furthermore, we synthesized the analogues of Compound 1 and found that these compounds show profound antileishmanial activity in the nanomolar range both in promastigotes and intracellular amastigotes. The enhanced inhibitory potential of these compounds was further supported by in-silico analysis of protein-ligand interactions which revealed high binding efficiency towards the catalytic pocket of LdTR. Taken together, this study reports the serendipitous discovery of ß-carboline-quinazolinone hybrids with enhanced antileishmanial activity along with the in-depth structure-activity relationships and mechanism of action of these analogues.


Assuntos
Antiprotozoários/farmacologia , Carbolinas/farmacologia , Homeostase/efeitos dos fármacos , Leishmania donovani/efeitos dos fármacos , Quinazolinonas/farmacologia , Animais , Carbolinas/química , Linhagem Celular , Humanos , Leishmania donovani/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Oxirredução , Quinazolinonas/química , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...