Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microbiol Spectr ; 9(3): e0110821, 2021 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-34878310

RESUMO

Equitable and timely access to COVID-19-related care has emerged as a major challenge, especially in developing and low-income countries. In India, ∼65% of the population lives in villages where infrastructural constraints limit the access to molecular diagnostics of COVID-19 infection. Especially, the requirement of a cold chain transport for sustained sample integrity and associated biosafety challenges pose major bottlenecks to the equitable access. Here, we developed an innovative clinical specimen collection medium, named SupraSens microbial transport medium (SSTM). SSTM allowed a cold chain-independent transport at a wide temperature range (15°C to 40°C) and directly inactivated SARS-CoV-2 (<15 min). Evaluation of SSTM compared to commercial viral transport medium (VTM) in field studies (n = 181 patients) highlighted that, for the samples from same patients, SSTM could capture more symptomatic (∼26.67%, 4/15) and asymptomatic (52.63%, 10/19) COVID-19 patients. Compared to VTM, SSTM yielded significantly lower quantitative PCR (qPCR) threshold cycle (Ct) values (mean ΔCt > -3.50), thereby improving diagnostic sensitivity of SSTM (18.79% [34/181]) versus that of VTM (11.05% [20/181]). Overall, SSTM had detection of COVID-19 patients 70% higher than that of VTM. Since the logistical and infrastructural constraints are not unique to India, our study highlights the invaluable global utility of SSTM as a key to accurately identify those infected and control COVID-19 transmission. Taken together, our data provide a strong justification to the adoption of SSTM for sample collection and transport during the pandemic. IMPORTANCE Approximately forty-four percent of the global population lives in villages, including 59% in Africa (https://unhabitat.org/World%20Cities%20Report%202020). The fast-evolving nature of SARS-CoV-2 and its extremely contagious nature warrant early and accurate COVID-19 diagnostics across rural and urban population as a key to prevent viral transmission. Unfortunately, lack of adequate infrastructure, including the availability of biosafety-compliant facilities and an end-to-end cold chain availability for COVID-19 molecular diagnosis, limits the accessibility of testing in these countries. Here, we fulfill this urgent unmet need by developing a sample collection and transport medium, SSTM, that does not require cold chain, neutralizes the virus quickly, and maintains the sample integrity at broad temperature range without compromising sensitivity. Further, we observed that use of SSTM in field studies during pandemic improved the diagnostic sensitivity, thereby establishing the feasibility of molecular testing even in the infrastructural constraints of remote, hilly, or rural communities in India and elsewhere.


Assuntos
COVID-19/diagnóstico , SARS-CoV-2/isolamento & purificação , Manejo de Espécimes/métodos , COVID-19/virologia , Teste para COVID-19 , Contenção de Riscos Biológicos , Meios de Cultura/química , Meios de Cultura/metabolismo , Humanos , Técnicas de Diagnóstico Molecular , Reação em Cadeia da Polimerase em Tempo Real , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Manejo de Espécimes/instrumentação
2.
Front Immunol ; 12: 694865, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34745086

RESUMO

Individuals with calcium oxalate (CaOx) kidney stones can have secondarily infected calculi which may play a role in the development of recurrent urinary tract infection (UTI). Uropathogenic Escherichia coli (UPEC) is the most common causative pathogen of UTIs. Macrophages play a critical role in host immune defense against bacterial infections. Our previous study demonstrated that oxalate, an important component of the most common type of kidney stone, impairs monocyte cellular bioenergetics and redox homeostasis. The objective of this study was to investigate whether oxalate compromises macrophage metabolism, redox status, anti-bacterial response, and immune response. Monocytes (THP-1, a human monocytic cell line) were exposed to sodium oxalate (soluble oxalate; 50 µM) for 48 hours prior to being differentiated into macrophages. Macrophages were subsequently exposed to calcium oxalate crystals (50 µM) for 48 hours followed by UPEC (MOI 1:2 or 1:5) for 2 hours. Peritoneal macrophages and bone marrow-derived macrophages (BMDM) from C57BL/6 mice were also exposed to oxalate. THP-1 macrophages treated with oxalate had decreased cellular bioenergetics, mitochondrial complex I and IV activity, and ATP levels compared to control cells. In addition, these cells had a significant increase in mitochondrial and total reactive oxygen species levels, mitochondrial gene expression, and pro-inflammatory cytokine (i.e. Interleukin-1ß, IL-1ß and Interleukin-6, IL-6) mRNA levels and secretion. In contrast, oxalate significantly decreased the mRNA levels and secretion of the anti-inflammatory cytokine, Interleukin-10 (IL-10). Further, oxalate increased the bacterial burden of primary macrophages. Our findings demonstrate that oxalate compromises macrophage metabolism, redox homeostasis, and cytokine signaling leading to a reduction in anti-bacterial response and increased infection. These data highlight a novel role of oxalate on macrophage function.


Assuntos
Metabolismo Energético/efeitos dos fármacos , Homeostase/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Oxalatos/farmacologia , Trifosfato de Adenosina/biossíntese , Animais , Infecções Bacterianas/imunologia , Citocinas/biossíntese , Humanos , Macrófagos/imunologia , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Oxirredução , Células THP-1
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...