Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Methods Mol Biol ; 2406: 339-358, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35089567

RESUMO

In the last two decades, numerous innovative advances, strategies and protocols have been developed and optimized to improve the quality and quantity of soluble recombinant protein production in E. coli. One of the major challenges being the coelution of chaperone proteins along with desired recombinant protein of interest. The removal of chaperones is important for protein yield, structural determination, optimal activity, and desired function of the recombinant protein. In this chapter, we outline various strategies for removal of chaperone contaminants from oligomeric proteins, with the ultimate objective of ameliorating the quality and proper folding of recombinant proteins. We have discussed in detail the purification and expression of full-length protein, GNE (UDP-N-acetylglucosamine 2-epimerase/ N-acetylmannosamine kinase), as a case study for chaperone removal.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Proteínas Recombinantes/metabolismo
2.
Integr Cancer Ther ; 19: 1534735420920711, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32463309

RESUMO

Background:Rhazya stricta has been used as a folkloric medicinal herb for treating various diseases such as diabetes, inflammatory disorders, and sore throat. Several studies have revealed the potential of this plant as an important source of phytochemicals with anticancer properties. Objective: The present study was designed to isolate a novel anticancer compound from Rhazya stricta and elucidate its mechanism of action using genomics approach. Methods:Rhazya stricta leaves extract was prepared, and several alkaloids were purified and characterized. These alkaloids were screened for their anticancer potential. One of the alkaloids, termed as isopicrinine, showed efficient cytotoxicity against MCF7 breast cancer cell line and was selected for further analysis. RNA-Seq transcription profiling was conducted to identify the affected genes and cellular pathways in MCF7 cells after treatment with isopicrinine alkaloid. Results: In vitro studies revealed that newly identified isopicrinine alkaloid possess efficient anticancer activity. Exposure of MCF7 cells with isopicrinine affected the expression of various genes involved in p53 signaling pathway. One of the crucial proapoptotic genes, significantly upregulated in MCF7 after exposure to alkaloid, was PUMA (p53 upregulated modulator of apoptosis), which is involved in p53-dependent and -independent apoptosis. Moreover, exposure of sublethal dose of isopicrinine alkaloid in breast cancer cell line led to the downregulation of survivin, which is involved in negative regulation of apoptosis. Besides, several genes involved in mitosis and cell proliferation were significantly downregulated. Conclusion: In this article, we report the determination of a new alkaloid isopicrinine from the aerial parts of Rhazya stricta with anticancer property. This compound has the potential to be developed as a drug for curing cancer.


Assuntos
Alcaloides , Apocynaceae , Perfilação da Expressão Gênica , Plantas Medicinais , Humanos , Extratos Vegetais
3.
Cancers (Basel) ; 11(7)2019 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-31247903

RESUMO

Effective diagnostic, prognostic and therapeutic biomarkers can help in tracking disease progress, predict patients' survival, and considerably affect the drive for successful clinical management. The present review aims to determine how the metastatic-linked protein anterior gradient homologue 2 (AGR2) operates to affect cancer progression, and to identify associated potential diagnostic, prognostic and therapeutic biomarkers, particularly in central nervous system (CNS) tumors. Studies that show a high expression level of AGR2, and associate the protein expression with the resilience to chemotherapeutic treatments or with poor cancer survival, are reported. The primary protein structures of the seven variants of AGR2, including their functional domains, are summarized. Based on experiments in various biological models, this review shows an orchestra of multiple molecules that regulate AGR2 expression, including a feedback loop with p53. The AGR2-associated molecular functions and pathways including genomic integrity, proliferation, apoptosis, angiogenesis, adhesion, migration, stemness, and inflammation, are detailed. In addition, the mechanisms that can enable the rampant oncogenic effects of AGR2 are clarified. The different strategies used to therapeutically target AGR2-positive cancer cells are evaluated in light of the current evidence. Moreover, novel associated pathways and clinically relevant deregulated genes in AGR2 high CNS tumors are identified using a meta-analysis approach.

4.
Integr Cancer Ther ; 18: 1534735418809901, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30373413

RESUMO

BACKGROUND: The role of alkaloids isolated from Rhazya stricta Decne (Apocynaceae family) (RS) in targeting genes involved in cancer and metastasis remains to be elucidated. OBJECTIVE: Identify and characterize new compounds from RS, which inhibit gene(s) involved in the survival, invasion, self-renewal, and metastatic processes of cancer cells. METHODS: Bioinformatics study was performed using HISAT2, stringtie, and ballgown pipeline to understand expressional differences between a normal epithelial cell line-MCF10A and MCF7. NMR and ATR-FTIR were performed to elucidate the structure of rhazyaminine (R.A), isolated from R stricta. Cell viability assay was performed using 0, 25, and 50 µg/mL of total extract of R stricta (TERS) and R.A, respectively, for 0, 24, and 48 hours, followed by scratch assay. In addition, total RNA was isolated for RNA- seq analysis of MCF7 cell line treated with R.A followed by qRT-PCR analysis of Bcl-2 gene. RESULTS: Deptor, which is upregulated in MCF7 compared with MCF10A as found in our bioinformatics study was downregulated by R.A. Furthermore, R.A effectively reduced cell viability to around 50% ( P < .05) and restricted cell migration in scratch assay. Thirteen genes, related to metastasis and cancer stem cells, were downregulated by R.A according to RNA- seq analysis. Additionally, qRT-PCR validated the downregulation of Bcl-2 gene in R.A-treated cells by less than 0.5 folds ( P < .05). CONCLUSION: R.A successfully downregulated key genes involved in apoptosis, cell survival, epithelial-mesenchymal transition, cancer stem cell proliferation, and Wnt signal transduction pathway making it an excellent "lead candidate" molecule for in vivo proof-of-concept studies.


Assuntos
Apocynaceae/química , Apoptose/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Genes bcl-2/efeitos dos fármacos , Extratos Vegetais/farmacologia , Alcaloides/farmacologia , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Humanos , Células MCF-7 , Células-Tronco Neoplásicas/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos
5.
Semin Cancer Biol ; 52(Pt 1): 85-102, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-28774835

RESUMO

Recent investments in research associated with the discovery of specific tumor biomarkers important for efficient diagnosis and prognosis are beginning to bear fruit. Key biomarkers could potentially outweigh traditional radiological or pathological methods by enabling specificity of early detection, when coupled with tumor molecular profiling and clinical associations. Only few biomarkers are approved by regulatory authorities for Central Nervous System Tumors (CNSTs), despite the evaluation of a large number of CNST related markers during clinical trials. Traditional CNSTs biomarkers include 1p/19q co-deletion, O6-Methylguanine-DNA Methyltransferase Methylation, and mutations in IDH1/IDH2. Recently tested CNSTs biomarkers include VEGFR-2, EGFRvIII, IL2, PDGFR, MMPs, BRAF, STAT3, PTEN, TERT, AKT, NF2, and BCL2. Additional studies have highlighted new and novel MicroRNAs, circular RNAs and long non-coding RNAs as promising biomarkers. Studies on microvesicles pinpoint exosomes as promising, less invasive biomarkers that could be isolated from the serum of cancer patients. Furthermore, Cancer Stem Cells (CSCs) related molecules, such as CD133, SOX2 and Nestin, utilized as CNST biomarkers, might enable efficient monitoring of cancer progression, and/or surveillance of emerging drug resistant cells. Approved protocols that implement novel molecular markers in diagnostics, prognostics and drug development will herald a new era of precision and personalized neuro-oncology. This review summarizes and discusses putative CNST biomarkers that are under clinical development, and are ready to move into diagnostic, prognostic and therapeutic applications. Data presented here is predicted to aid in streamlining the process of biomarker's research and development.


Assuntos
Biomarcadores Tumorais/genética , Neoplasias do Sistema Nervoso Central/genética , Mutação , Células-Tronco Neoplásicas/metabolismo , Ácidos Nucleicos Livres/genética , Neoplasias do Sistema Nervoso Central/diagnóstico , Neoplasias do Sistema Nervoso Central/terapia , Exossomos/genética , Humanos , MicroRNAs/genética , Células-Tronco Neoplásicas/patologia , Prognóstico , RNA Longo não Codificante/genética
6.
Cancer Cell Int ; 17: 72, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28736504

RESUMO

BACKGROUND: Meningioma tumors arise in arachnoid membranes, and are the most reported central nervous system (CNS) tumors worldwide. Up to 20% of grade I meningioma tumors reoccur and currently predictive cancer stem cells (CSCs) markers for aggressive and drug resistant meningiomas are scarce. METHODS: Meningioma tissues and primary cell lines were investigated using whole transcriptome microarray analysis, immunofluorescence staining of CSCs markers (including CD133, Sox2, Nestin, and Frizzled 9), and drug treatment with cisplatin or etoposide. RESULTS: Unsupervised hierarchical clustering of six meningioma samples separated tissues into two groups. Analysis identified stem cells related pathways to be differential between the two groups and indicated the de-regulation of the stem cell associated genes Reelin (RELN), Calbindin 1 (CALB1) and Anterior Gradient 2 Homolog (AGR2). Immunofluorescence staining for four tissues confirmed stemness variation in situ. Biological characterization of fifteen meningioma primary cell lines concordantly separated cells into two functionally distinct sub-groups. Pleomorphic cell lines (NG type) grew significantly faster than monomorphic cell lines (G type), had a higher number of cells that express Ki67, and were able to migrate aggressively in vitro. In addition, NG type cell lines had a lower expression of nuclear Caspase-3, and had a significantly higher number of CSCs co-positive for CD133+ Sox2+ or AGR2+ BMI1+. Importantly, these cells were more tolerant to cisplatin and etoposide treatment, showed a lower level of nuclear Caspase-3 in treated cells and harbored drug resistant CSCs. CONCLUSION: Collectively, analyses of tissues and primary cell lines revealed stem cell associated genes as potential targets for aggressive and drug resistant meningiomas.

7.
Chem Cent J ; 11: 11, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28194226

RESUMO

Rhazya stricta is a unique medicinal plant source for many indole alkaloids, non-alkaloids, flavonoids, triterpenes and other unknown molecules with tremendous potential for therapeutic applications against many diseases. In the present article, we generated computational data on predictive properties and activity across two key therapeutic areas of cancer and obesity, and corresponding cheminformatics studies were carried out to examine druggable properties of these alkaloids. Computed physiochemical properties of the 78 indole alkaloids from R. stricta plant using industry-standard scientific molecular modeling software and their predictive anti-cancer activities from reliable web-source technologies indicate their plausible therapeutic applications. Their predictive ADME properties are further indicative of their drug-like-ness. We believe that the top-ranked molecules with anti-cancer activity are clearly amenable to chemical modifications for creating potent, safe and efficacious compounds with the feasibility of generating new chemical entities after pre-clinical and clinical studies.

8.
Biomed Res Int ; 2016: 3423685, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27579308

RESUMO

Increase in the incidence of Insulin Dependent Diabetes Mellitus (IDDM) among people from developed and developing countries has created a large global market for insulin. Moreover, exploration of new methods for insulin delivery including oral or inhalation route which require very high doses would further increase the demand of cost-effective recombinant insulin. Various bacterial and yeast strains have been optimized to overproduce important biopharmaceuticals. One of the approaches we have taken is the production of recombinant human insulin along with C-peptide in yeast Pichia pastoris. We procured a cDNA clone of insulin from Origene Inc., USA. Insulin cDNA was PCR amplified and cloned into yeast vector pPICZ-α. Cloned insulin cDNA was confirmed by restriction analysis and DNA sequencing. pPICZ-α-insulin clone was transformed into Pichia pastoris SuperMan 5 strain. Several Zeocin resistant clones were obtained and integration of insulin cDNA in Pichia genome was confirmed by PCR using insulin specific primers. Expression of insulin in Pichia clones was confirmed by ELISA, SDS-PAGE, and Western blot analysis. In vivo efficacy studies in streptozotocin induced diabetic mice confirmed the activity of recombinant insulin. In conclusion, a biologically active human proinsulin along with C-peptide was expressed at high level using Pichia pastoris expression system.


Assuntos
Peptídeo C/química , Insulina/administração & dosagem , Insulina/uso terapêutico , Pichia/metabolismo , Administração Oral , Animais , Clonagem Molecular , Análise Custo-Benefício , DNA Complementar/metabolismo , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Vetores Genéticos , Humanos , Insulina/biossíntese , Camundongos , Plasmídeos/metabolismo , Reação em Cadeia da Polimerase , Proteínas Recombinantes/biossíntese
9.
Oncotarget ; 7(46): 76337-76353, 2016 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-27486983

RESUMO

Tumor comprises of heterogeneous population of cells where not all the disseminated cancer cells have the prerogative and "in-build genetic cues" to form secondary tumors. Cells with stem like properties complemented by key signaling molecules clearly have shown to exhibit selective growth advantage to form tumors at distant metastatic sites. Thus, defining the role of cancer stem cells (CSC) in tumorigenesis and metastasis is emerging as a major thrust area for therapeutic intervention. Precise relationship and regulatory mechanisms operating in various signal transduction pathways during cancer dissemination, extravasation and angiogenesis still remain largely enigmatic. How the crosstalk amongst circulating tumor cells (CTC), epithelial mesenchymal transition (EMT) process and CSC is coordinated for initiating the metastasis at secondary tissues, and during cancer relapse could be of great therapeutic interest. The signal transduction mechanisms facilitating the dissemination, infiltration of CSC into blood stream, extravasations, progression of metastasis phenotype and angiogenesis, at distant organs, are the key pathologically important vulnerabilities being elucidated. Therefore, current new drug discovery focus has shifted towards finding "key driver genes" operating in parallel signaling pathways, during quiescence, survival and maintenance of stemness in CSC. Understanding these mechanisms could open new horizons for tackling the issue of cancer recurrence and metastasis-the cause of ~90% cancer associated mortality. To design futuristic & targeted therapies, we propose a multi-pronged strategy involving small molecules, RNA interference, vaccines, antibodies and other biotechnological modalities against CSC and the metastatic signal transduction cascade.


Assuntos
Antineoplásicos/uso terapêutico , Terapia de Alvo Molecular , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Antineoplásicos/farmacologia , Ciclo Celular , Transição Epitelial-Mesenquimal/genética , Matriz Extracelular/metabolismo , Humanos , Metástase Neoplásica , Neoplasias/patologia , Fase de Repouso do Ciclo Celular/genética , Microambiente Tumoral
10.
Drug Discov Today ; 20(10): 1205-16, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26143148

RESUMO

Despite earlier controversies about their role and existence within tumors, cancer stem cells (CSCs) are now emerging as a plausible target for new drug discovery. Research and development (R&D) efforts are being directed against key gene(s) driving initiation, growth, and metastatic pathways in CSCs and the tumor microenvironment (TME). However, the niche signals that enable these pluripotent CSCs to evade radio- and chemotherapy, and to travel to secondary tissues remain enigmatic. Small-molecule drugs, biologics, miRNA, RNA interference (RNAi), and vaccines, among others, are under active investigation. Here, we examine the feasibility of leveraging current knowhow of the molecular biology of CSCs and their cellular milieu to design futuristic, targeted drugs with potentially lower toxicity that can override the multiple drug-resistance issues currently observed with existing therapeutics.


Assuntos
Antineoplásicos/farmacologia , Neoplasias/tratamento farmacológico , Células-Tronco Neoplásicas/metabolismo , Animais , Antineoplásicos/efeitos adversos , Desenho de Fármacos , Resistencia a Medicamentos Antineoplásicos , Humanos , Terapia de Alvo Molecular , Metástase Neoplásica , Neoplasias/patologia , Microambiente Tumoral
11.
J Microbiol Biotechnol ; 25(7): 953-62, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25737124

RESUMO

Escherichia coli is the most preferred microorganism to express heterologous proteins for therapeutic use, as around 30% of the approved therapeutic proteins are currently being produced using it as a host. Owing to its rapid growth, high yield of the product, cost-effectiveness, and easy scale-up process, E. coli is an expression host of choice in the biotechnology industry for large-scale production of proteins, particularly non-glycosylated proteins, for therapeutic use. The availability of various E. coli expression vectors and strains, relatively easy protein folding mechanisms, and bioprocess technologies, makes it very attractive for industrial applications. However, the codon usage in E. coli and the absence of post-translational modifications, such as glycosylation, phosphorylation, and proteolytic processing, limit its use for the production of slightly complex recombinant biopharmaceuticals. Several new technological advancements in the E. coli expression system to meet the biotechnology industry requirements have been made, such as novel engineered strains, genetically modifying E. coli to possess capability to glycosylate heterologous proteins and express complex proteins, including full-length glycosylated antibodies. This review summarizes the recent advancements that may further expand the use of the E. coli expression system to produce more complex and also glycosylated proteins for therapeutic use in the future.


Assuntos
Produtos Biológicos/metabolismo , Biotecnologia/métodos , Escherichia coli/genética , Escherichia coli/metabolismo , Engenharia Metabólica/métodos , Tecnologia Farmacêutica/métodos , Biotecnologia/tendências , Tecnologia Farmacêutica/tendências
12.
Methods Mol Biol ; 1258: 45-63, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25447858

RESUMO

The production of recombinant proteins, in soluble form in a prokaryotic expression system, still remains a challenge for the biotechnologist. Innovative strategies have been developed to improve protein solubility in various protein overexpressing hosts. In this chapter, we would focus on methods currently available and amenable to "desired modifications," such as (a) the use of molecular chaperones; (b) the optimization of culture conditions; (c) the reengineering of a variety of host strains and vectors with affinity tags; and (d) optimal promoter strengths. All these parameters are evaluated with the primary objective of increasing the solubilization of recombinant protein(s) during overexpression in Escherichia coli.


Assuntos
Meios de Cultura/metabolismo , Escherichia coli/metabolismo , Proteínas Recombinantes/metabolismo , Animais , Biotecnologia/métodos , Escherichia coli/genética , Vetores Genéticos/genética , Vetores Genéticos/metabolismo , Humanos , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Regiões Promotoras Genéticas/genética , Proteínas Recombinantes/genética , Solubilidade
13.
Microb Cell Fact ; 13: 141, 2014 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-25270715

RESUMO

The rapid increase in the number of diabetic patients globally and exploration of alternate insulin delivery methods such as inhalation or oral route that rely on higher doses, is bound to escalate the demand for recombinant insulin in near future. Current manufacturing technologies would be unable to meet the growing demand of affordable insulin due to limitation in production capacity and high production cost. Manufacturing of therapeutic recombinant proteins require an appropriate host organism with efficient machinery for posttranslational modifications and protein refolding. Recombinant human insulin has been produced predominantly using E. coli and Saccharomyces cerevisiae for therapeutic use in human. We would focus in this review, on various approaches that can be exploited to increase the production of a biologically active insulin and its analogues in E. coli and yeast. Transgenic plants are also very attractive expression system, which can be exploited to produce insulin in large quantities for therapeutic use in human. Plant-based expression system hold tremendous potential for high-capacity production of insulin in very cost-effective manner. Very high level of expression of biologically active proinsulin in seeds or leaves with long-term stability, offers a low-cost technology for both injectable as well as oral delivery of proinsulin.


Assuntos
Escherichia coli , Plantas Geneticamente Modificadas , Proinsulina , Saccharomyces cerevisiae , Escherichia coli/genética , Escherichia coli/metabolismo , Humanos , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Proinsulina/biossíntese , Proinsulina/genética , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
14.
Curr Drug Targets ; 15(4): 410-22, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24313690

RESUMO

5-Lipoxygenase (5-LO) is the key enzyme involved in the synthesis of pro-inflammatory leukotrienes (LTs) and has become a prime target for new drug discovery research and development efforts by the pharmaceutical and biotech industry. The pathophysiological effects of LTs can be modulated by the selective inhibition of 5-LO. In this review, we summarize the established dogma and recent progress on the biochemical and pharmacological regulation of 5-LO and its diverse cellular partners. In the last decade, significant research efforts have led to the exploitation of 5-LO pathway for developing new drugs against inflammatory diseases. Despite few setbacks, a number of promising molecules have moved into clinical development. These fundamental discoveries and proof-of-concept studies will ultimately be helpful in delineating how 5-LO pathway participates in the development of disease phenotype and what are possible key biomarkers of disease progression and regression. Elucidation of molecular mechanism-of-action of 5-LO in individual cell types will pave the way for improving efficacy parameters. Taken together, this combined knowledge about the 5-LO pathway would be helpful in planning collaborative and targeted R&D efforts, by the academic laboratories and pharmaceutical/ biotech industry, for the discovery and development of novel, efficacious and safer drugs against multiple diseases.


Assuntos
Araquidonato 5-Lipoxigenase/metabolismo , Desenho de Fármacos , Inflamação/patologia , Inibidores de Lipoxigenase/farmacologia , Biomarcadores/metabolismo , Humanos , Inflamação/tratamento farmacológico , Transdução de Sinais/efeitos dos fármacos
15.
Infect Disord Drug Targets ; 13(3): 206-14, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24087896

RESUMO

Over the last two decades, occurrence of bacterial resistance to commonly used antibiotics has necessitated the development of safer and more potent anti-microbial drugs. However, the development of novel antibiotics is severely hampered by adverse side effects, such as drug-induced liver toxicity. Several antibacterial drugs are known to have the potential to cause severe liver damage. The major challenge in developing novel anti-microbial drugs is to predict, with certain amount of probability, the drug-induced toxicity during the pre-clinical stages, thus optimizing and reducing the time and cost of drug development. Toxicogenomics approach is generally used to harness the potential of genomic tools and to understand the physiological basis of drug-induced toxicity based on the in-depth analysis of Metagenomic data sets, i.e., transcriptional, translational or metabolomic profiles. Toxicogenomics, therefore, represents a new paradigm in the drug development process, and is anticipated to play an invaluable role in future to develop safe and efficacious medicines, by predicting the toxic potential of a new chemical entity (NCE) in early stages of drug discovery. This review examines the toxicogenomic approach in predicting the safety/toxicity of novel anti-microbial drugs, and analyses the promises, pitfalls and challenges of applying this powerful technology to the drug development process.


Assuntos
Anti-Infecciosos/efeitos adversos , Avaliação Pré-Clínica de Medicamentos/métodos , Indústria Farmacêutica/métodos , Drogas em Investigação/efeitos adversos , Testes de Toxicidade/métodos , Toxicogenética/métodos , Animais , Anti-Infecciosos/uso terapêutico , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Desenho de Fármacos , Avaliação Pré-Clínica de Medicamentos/tendências , Indústria Farmacêutica/tendências , Resistência a Múltiplos Medicamentos , Drogas em Investigação/uso terapêutico , Perfilação da Expressão Gênica , Humanos , Terapia de Alvo Molecular/efeitos adversos , Insuficiência Renal/induzido quimicamente , Insuficiência Renal/prevenção & controle , Testes de Toxicidade/tendências
16.
Mol Med Rep ; 6(1): 9-15, 2012 07.
Artigo em Inglês | MEDLINE | ID: mdl-22576734

RESUMO

RNA interference (RNAi) is a sequence-specific, post-transcriptional gene silencing mechanism in animals and plants, which is mediated by double-stranded RNA (dsRNA). There has recently been an increasing interest in harnessing the gene silencing activity of dsRNA to develop novel drugs for the treatment of various diseases, such as cancer, neurological disorders, age-related macular degeneration and viral infections. Small interfering RNA (siRNA)-based drugs have distinct advantages over conventional small molecule or protein-based drugs, including high specificity, higher potency and reduced toxicity. However, there are several technical obstacles to overcome before siRNA-based drugs reach the clinic. Delivery of siRNA to the target tissues and stability in the serum remain a major challenge and are the main focus of current research and development efforts. This review focused primarily on the progress made in developing RNAi as therapeutics for cancer and the challenges associated with its clinical development. Use of ligands recognizing cell-specific receptors to achieve tumor-specific delivery of siRNA, methods for enhanced siRNA delivery, improving the bioavailability and pharmacokinetic properties of siRNA and reducing the off-target effects and non-specific gene silencing are discussed in the light of current evidence.


Assuntos
Neoplasias/terapia , Interferência de RNA , RNA Interferente Pequeno/uso terapêutico , Animais , Ensaios Clínicos como Assunto , Humanos , Neoplasias/genética , RNA Interferente Pequeno/efeitos adversos , RNA Interferente Pequeno/farmacocinética
17.
Drug Discov Today ; 16(17-18): 793-9, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21864709

RESUMO

The cytochrome P450 (CYP) enzymes, involved in the metabolism of therapeutic drugs, are the major determinants of drug half-life. From a drug industry perspective, variability in drug response owing to CYP polymorphisms makes CYP profiling a commercially interesting option for diagnosis, prognosis and predicting response to drug treatment. Recent studies highlighting microRNA-mediated regulation of CYP genes represents a major advance in our understanding of variations in individual drug responses. Herein we review new perspectives on the molecular mechanisms of CYP regulation and genotyping technologies. Together, these developments present novel therapeutic opportunities and help to explain the integrated response of cells to xenobiotic drug metabolism.


Assuntos
Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Xenobióticos/farmacocinética , Animais , Genótipo , Meia-Vida , Humanos , Inativação Metabólica , MicroRNAs/genética , Polimorfismo Genético
18.
Eur J Pharmacol ; 652(1-3): 157-63, 2011 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-20540938

RESUMO

Dipeptidyl peptidase IV (DPP-IV) inhibiton is a well recognized approach to treat Type 2 diabetes. RBx-0597 is a novel DPP-IV inhibitor discovered in our laboratory. The aim of the present study was to characterize the pharmacological profiles of RBx-0597 in vitro and in vivo as an anti-diabetic agent. RBx-0597 inhibited human, mouse and rat plasma DPP-IV activity with IC(50) values of 32, 31 and 39nM respectively. RBx-0597 exhibited significant selectivity over dipeptidyl peptidase8 (DPP-8), dipeptidyl peptidase9 (DPP-9) (150-300 fold) and other proline-specific proteases (>200-2000 fold). Kinetic analysis revealed that RBx-0597 is a competitive and slow binding DPP-IV inhibitor. In ob/ob mice, RBx-0597 (10mg/kg) inhibited plasma DPP-IV activity upto 50% 8h post-dose and showed a dose-dependent glucose excursion. RBx-0597 (10mg/kg) showed a significant glucose lowering effect (∼25% AUC of △ blood glucose) which was sustained till 12h, significantly increased the active glucagon-like peptide-1(GLP-1) and insulin levels. It showed a favourable pharmacokinetic profile (plasma clearance:174ml/min/kg; C(max) 292ng/ml; T(1/2) 0.28h; T(max) 0.75h and V(ss) 4.13L/kg) in Wistar rats with the oral bioavailability (F(oral)) of 65%. In summary, the present studies indicate that RBx-0597 is a novel DPP-IV inhibitor with anti-hyperglycemic effect and a promising candidate for further development as a drug for the treatment of type 2 diabetes.


Assuntos
Diabetes Mellitus Tipo 2/tratamento farmacológico , Dipeptidil Peptidase 4/metabolismo , Inibidores da Dipeptidil Peptidase IV/uso terapêutico , Hipoglicemiantes/uso terapêutico , Animais , Glicemia/análise , Glicemia/metabolismo , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patologia , Dipeptidil Peptidase 4/sangue , Inibidores da Dipeptidil Peptidase IV/administração & dosagem , Inibidores da Dipeptidil Peptidase IV/farmacologia , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Feminino , Teste de Tolerância a Glucose , Hipoglicemiantes/administração & dosagem , Hipoglicemiantes/farmacologia , Insulina/sangue , Insulina/uso terapêutico , Cinética , Masculino , Camundongos , Camundongos Obesos , Ratos , Ratos Wistar
19.
Antimicrob Agents Chemother ; 54(11): 4789-93, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20713679

RESUMO

We screened 194 Mycobacterium tuberculosis strains isolated from tuberculosis (TB) patients in Delhi and neighboring regions in India to identify the prevalence of extensive drug resistance (XDR) in clinical isolates. Among these, 104 isolates were found to be multidrug resistant (MDR), and 6 were identified as XDR isolates, which was later confirmed by antimicrobial susceptibility testing against the respective drug screening panel. Genotyping was carried out by amplifying and sequencing the following genes: rpoB (rifampin), katG (isoniazid), gyrA (fluoroquinolones), and rrs (amikacin, kanamycin, and capreomycin). Our analyses indicated that mutations at the hot spots of these genes were positively correlated with drug resistance in clinical isolates. The key mutation observed for rpoB was in the codon for amino acid position 531 (S531L), and other mutations were seen in the hot spot, including those encoding Q510P, L511H, D516V, and H526Y mutations. We identified S315T and R463L substitutions encoded in the katG locus. An S95T substitution encoded in the gyrA locus was the most common mutation observed in fluoroquinolone-resistant isolates. In addition, we saw D94G and D94N mutations encoded in the QRDR region. The 16S rRNA (rrs) gene encoded mainly the A1401G mutation and an additional mutation, G1484T, resulting in ribosomal modifications. Taken together, the data in this report clearly establish the presence of phenotypically distinct XDR strains in India by molecular profiling and further identify specific mutational hot spots within key genes of XDR-TB strains.


Assuntos
Antituberculosos/farmacologia , Tuberculose Extensivamente Resistente a Medicamentos/microbiologia , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/genética , Amicacina/farmacologia , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Capreomicina/farmacologia , DNA Girase/química , DNA Girase/genética , Análise Mutacional de DNA , RNA Polimerases Dirigidas por DNA , Fluoroquinolonas/farmacologia , Índia , Isoniazida/farmacologia , Canamicina/farmacologia , Testes de Sensibilidade Microbiana , Mutação , Mycobacterium tuberculosis/patogenicidade , Mutação Puntual/genética , Reação em Cadeia da Polimerase , Rifampina/farmacologia
20.
Phytother Res ; 24(8): 1260-3, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20658575

RESUMO

Several herbal plants such as Chinese herb Rhizoma Coptidis have been reported to possess antidiabetic activity. Berberine is its major active constituent and functions as an insulin sensitizer and insulin secretagogue. It has been reported to modulate several signaling pathways and targets. The objective of the current study is to investigate if berberine can function as a ligand of fatty acid receptor GPR40, which stimulates glucose dependent insulin secretion. Towards this objective, a mammalian cell line with stable overexpression of GPR40 was generated and characterized. Berberine stimulated calcium mobilization with an EC(50) of 0.76 microM in this GPR40 overexpressing cell line. Further, berberine stimulated glucose dependent insulin secretion from rat pancreatic beta cell line. This suggests that berberine functions as an agonist of fatty acid receptor GPR40 and might be a novel antidiabetic mechanism of action for berberine.


Assuntos
Berberina/farmacologia , Hipoglicemiantes/farmacologia , Células Secretoras de Insulina/efeitos dos fármacos , Receptores Acoplados a Proteínas G/metabolismo , Animais , Cálcio/metabolismo , Linhagem Celular , Glucose/metabolismo , Insulina/metabolismo , Secreção de Insulina , Ratos , Receptores Acoplados a Proteínas G/agonistas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...