Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 13(1): 3555, 2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35729113

RESUMO

Mechanistic models of how single cells respond to different perturbations can help integrate disparate big data sets or predict response to varied drug combinations. However, the construction and simulation of such models have proved challenging. Here, we developed a python-based model creation and simulation pipeline that converts a few structured text files into an SBML standard and is high-performance- and cloud-computing ready. We applied this pipeline to our large-scale, mechanistic pan-cancer signaling model (named SPARCED) and demonstrate it by adding an IFNγ pathway submodel. We then investigated whether a putative crosstalk mechanism could be consistent with experimental observations from the LINCS MCF10A Data Cube that IFNγ acts as an anti-proliferative factor. The analyses suggested this observation can be explained by IFNγ-induced SOCS1 sequestering activated EGF receptors. This work forms a foundational recipe for increased mechanistic model-based data integration on a single-cell level, an important building block for clinically-predictive mechanistic models.


Assuntos
Computação em Nuvem , Software , Proliferação de Células , Simulação por Computador , Transdução de Sinais
2.
Curr Opin Biotechnol ; 63: 89-98, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31927423

RESUMO

One of the most interesting, difficult, and potentially useful topics in computational biology is the inference of gene regulatory networks (GRNs) from expression data. Although researchers have been working on this topic for more than a decade and much progress has been made, it remains an unsolved problem and even the most sophisticated inference algorithms are far from perfect. In this paper, we review the latest developments in network inference, including state-of-the-art algorithms like PIDC, Phixer, and more. We also discuss unsolved computational challenges, including the optimal combination of algorithms, integration of multiple data sources, and pseudo-temporal ordering of static expression data. Lastly, we discuss some exciting applications of network inference in cancer research, and provide a list of useful software tools for researchers hoping to conduct their own network inference analyses.


Assuntos
Redes Reguladoras de Genes , Biologia de Sistemas , Algoritmos , Biologia Computacional , Software
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...