Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 146(7): 4369-4374, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38335065

RESUMO

Reaction of the ruthenium carbene complex Cp*(IPr)RuCl (1) (IPr = 1,3-bis(Dipp)imidazol-2-ylidene; Dipp = 2,6-diisopropylphenyl) with sodium phosphaethynolate (NaOCP) led to intramolecular dearomatization of one of the Dipp substituents on the Ru-bound carbene to afford a Ru-bound phosphanorcaradiene, 2. Computations by DFT reveal a transition state characterized by a concerted process whereby CO migrates to the Ru center as the P atom adds to the π system of the aryl group. The phosphanorcaradiene possesses ambiphilic properties and reacts with both nucleophilic and electrophilic substrates, resulting in rearomatization of the ligand aryl group with net P atom transfer to give several unusual metal-bound, P-containing main-group moieties. These new complexes include a metallo-1-phospha-3-azaallene (Ru─P═C═NR), a metalloiminophosphanide (Ru─P═N─R), and a metallophosphaformazan (Ru─P(═N─N═CPh2)2). Reaction of 2 with the carbene 2,3,4,5-tetramethylimidazol-2-ylidene (IMe4) produced the corresponding phosphaalkene DippP═IMe4.

2.
Chemistry ; 29(49): e202301863, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37439447

RESUMO

Reactions of the IrV hydride [Me BDIDipp ]IrH4 {BDI=(Dipp)NC(Me)CH(Me)CN(Dipp); Dipp=2,6-iPr2 C6 H3 } with E[N(SiMe3 )2 ]2 (E=Sn, Pb) afforded the unusual dimeric dimetallotetrylenes ([Me BDIDipp ]IrH)2 (µ2 -E)2 in good yields. Moreover, ([Me BDIDipp ]IrH)2 (µ2 -Ge)2 was formed in situ from thermal decomposition of [Me BDIDipp ]Ir(H)2 Ge[N(SiMe3 )2 ]2 . These reactions are accompanied by liberation of HN(SiMe3 )2 and H2 through the apparent cleavage of an E-N(SiMe3 )2 bond by Ir-H. In a reversal of this process, ([Me BDIDipp ]IrH)2 (µ2 -E)2 reacted with excess H2 to regenerate [Me BDIDipp ]IrH4 . Varying the concentrations of reactants led to formation of the trimeric ([Me BDIDipp ]IrH2 )3 (µ2 -E)3 . The further scope of this synthetic route was investigated with group 15 amides, and ([Me BDIDipp ]IrH)2 (µ2 -Bi)2 was prepared by the reaction of [Me BDIDipp ]IrH4 with Bi(NMe2 )3 or Bi(OtBu)3 to afford the first example of a "naked" two-coordinate Bi atom bound exclusively to transition metals. A viable mechanism that accounts for the formation of these products is proposed. Computational investigations of the Ir2 E2 (E=Sn, Pb) compounds characterized them as open-shell singlets with confined nonbonding lone pairs at the E centers. In contrast, Ir2 Bi2 is characterized as having a closed-shell singlet ground state.

3.
ACS Catal ; 11(15): 9738-9753, 2021 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-35572380

RESUMO

Enantioselective C(sp3)-H activation has gained considerable attention from the synthetic chemistry community. Despite the intense interest in these reactions, the mechanisms responsible for enantioselection are still vague. In the course of the development of aryl thioether-directed C(sp3)-H arylation, we noticed extreme variation in sensitivity of two substrate classes to substituent effects of ligands and directing groups: whereas 3-pentyl sulfides (prochiral α-center) responded positively to substitution on ligands and directing groups, isobutyl sulfides (prochiral ß-center) were entirely insensitive. Quantitative structure selectivity relationship (QSSR) analyses of directing group and ligand substitution and the development of a new class of mono-N-acetyl protected amino anilamide (MPAAn) ligands led to high enantiomeric ratios (up to 99:1) for thioether-directed C(sp3)-H arylation. Key to the realization of this method was the exploitation of transient chirality at sulfur, which relays stereochemical information from the ligand backbone to enantiotopic carbons of the substrate in a rate- and enantio-determining cyclometallation deprotonation. The absolute stereochemistry of the products for these two substrates were revealed to be opposite. DFT evaluation of all possible diastereomeric transition states confirmed initial premises that guided rational ligand and directing group design. The implications of this study will assist in the further development of enantioselective C(sp3)-H activation, namely by highlighting the non-innocence of directing groups, distal steric influences, and the delicate interplay between steric Pauli repulsion and London dispersion in enantioinduction.

4.
J Am Chem Soc ; 142(24): 10571-10591, 2020 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-32437604

RESUMO

The ability to differentiate between highly similar C-H bonds in a given molecule remains a fundamental challenge in organic chemistry. In particular, the lack of sufficient steric and electronic differences between C-H bonds located distal to functional groups has prevented the development of site-selective catalysts with broad scope. An emerging approach to circumvent this obstacle is to utilize the distance between a target C-H bond and a coordinating functional group, along with the geometry of the cyclic transition state in directed C-H activation, as core molecular recognition parameters to differentiate between multiple C-H bonds. In this Perspective, we discuss the advent and recent advances of this concept. We cover a wide range of transition-metal-catalyzed, template-directed remote C-H activation reactions of alcohols, carboxylic acids, sulfonates, phosphonates, and amines. Additionally, we review eminent examples which take advantage of non-covalent interactions to achieve regiocontrol. Continued advancement of this distance- and geometry-based differentiation approach for regioselective remote C-H functionalization reactions may lead to the ultimate realization of molecular editing: the freedom to modify organic molecules at any site, in any order.


Assuntos
Álcoois/química , Aminas/química , Ácidos Carboxílicos/química , Organofosfonatos/química , Ácidos Sulfínicos/química , Elementos de Transição/química , Catálise , Estrutura Molecular
5.
Science ; 359(6377)2018 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-29449462

RESUMO

Organic molecules are rich in carbon-hydrogen bonds; consequently, the transformation of C-H bonds to new functionalities (such as C-C, C-N, and C-O bonds) has garnered much attention by the synthetic chemistry community. The utility of C-H activation in organic synthesis, however, cannot be fully realized until chemists achieve stereocontrol in the modification of C-H bonds. This Review highlights recent efforts to enantioselectively functionalize C(sp3)-H bonds via transition metal catalysis, with an emphasis on key principles for both the development of chiral ligand scaffolds that can accelerate metalation of C(sp3)-H bonds and stereomodels for asymmetric metalation of prochiral C-H bonds by these catalysts.

6.
J Am Chem Soc ; 139(31): 10702-10714, 2017 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-28749693

RESUMO

A conformationally flexible template for the meta-C-H olefination of benzoic acids was designed through both experimental and computational efforts. The newly designed template favors a silver-palladium heterodimer low barrier transition state, and demonstrates that it is feasible to lengthen templates so as to achieve meta-selectivity when the distance between the functional handle of the native substrate and target C-H bond decreases. Analysis of the ortho-, meta-, and para-C-H cleavage transition states determined that the new template conformation optimizes the interaction between the nitrile and palladium-silver dimer in the meta-transition state, enabling palladium to cleave meta-C-H bonds with moderate-to-good yields and generally high regioselectivity. Regioselectivity is governed exclusively by the template, and kinetic experiments reveal that there is a 4-fold increase in rate in the presence of monoprotected amino acid ligands. Using a Boltzmann distribution of all accessible C-H activation transition states, it is possible to computationally predict meta-selectivity in a number of investigated templates with reasonable accuracy. Structural and distortion energies reported may be used for the further development of templates for meta-C-H activation of hitherto unexplored arene substrates.


Assuntos
Benzoatos/química , Metais/química , Conformação Molecular , Nitrilas/química , Paládio/química , Prata/química
7.
Angew Chem Int Ed Engl ; 56(19): 5317-5321, 2017 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-28393446

RESUMO

One long-standing issue in directed C-H functionalization is that either nitrogen or sulfur atoms present in heterocyclic substrates may bind preferentially to a transition-metal catalyst rather than to the desired directing group. This competitive binding has largely hindered the application of C-H functionalization in late-stage heterocycle drug discovery. Reported here is the use of an oxazoline-based directing group capable of overriding the poisoning effect of a wide range of heterocycle substrates. The potential use of this directing group in pharmaceutical drug discovery is illustrated by diversification of Telmisartan (an antagonist for the angiotensin II receptor) through copper-mediated C-H amination, hydroxylation, thiolation, arylation, and trifluoromethylation.

8.
J Am Chem Soc ; 139(16): 5724-5727, 2017 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-28391681

RESUMO

We herein report the palladium(II)-catalyzed bromination and iodination of a variety of α-hydrogen-containing carboxylic acid and amino acid-derived amides. These reactions are exclusively enabled by quinoline-type ligands. The halogenated products obtained in this reaction are highly versatile and rapidly undergo further diversification. Further, we report the first example of a free carboxylic acid-directed Pd(II)-catalyzed C(sp3)-H bromination, enabled by quinoline ligands.


Assuntos
Amidas/química , Ácidos Carboxílicos/química , Hidrocarbonetos Bromados/síntese química , Hidrocarbonetos Iodados/síntese química , Paládio/química , Quinolinas/química , Aminoácidos/química , Catálise , Halogenação , Hidrocarbonetos Bromados/química , Hidrocarbonetos Iodados/química , Hidrogênio/química , Ligantes , Estrutura Molecular
9.
Angew Chem Int Ed Engl ; 56(6): 1506-1509, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-28052530

RESUMO

Herein we report acid-directed ß-C(sp3 )-H arylation of α-amino acids enabled by pyridine-type ligands. This reaction does not require the installation of an exogenous directing group, is scalable, and enables the preparation of Fmoc-protected unnatural amino acids in three steps. The pyridine-type ligands are crucial for the development of this new C(sp3 )-H arylation.


Assuntos
Aminoácidos/síntese química , Fluorenos/síntese química , Hidrocarbonetos Aromáticos/síntese química , Piridinas/química , Aminoácidos/química , Catálise , Fluorenos/química , Hidrocarbonetos Aromáticos/química , Ligantes , Paládio/química , Piridinas/síntese química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...