Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Assunto principal
Tipo de estudo
Intervalo de ano de publicação
1.
Phys Rev E Stat Nonlin Soft Matter Phys ; 82(2 Pt 1): 021409, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20866811

RESUMO

We have studied the effect of an external acoustic wave on bubble displacements inside an aqueous foam. The signature of the acoustic-induced bubble displacements is found using a multiple light scattering technique, and occurs as a modulation on the photon correlation curve. Measurements for various sound frequencies and amplitudes are compared to analytical predictions and numerical simulations. These comparisons finally allow us to elucidate the nontrivial acoustic displacement profile inside the foam; in particular, we find that the acoustic wave creates a localized shear in the vicinity of the solid walls holding the foam, as a consequence of inertial contributions. This study of how bubbles "dance" inside a foam as a response to sound turns out to provide new insights on foam acoustics and sound transmission into a foam, foam deformation at high frequencies, and analysis of light scattering data in samples undergoing nonhomogeneous deformations.

2.
Soft Matter ; 4(7): 1531-1535, 2008 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-32907121

RESUMO

We have performed a quantitative study of the coarsening of foams stabilised by partially hydrophobic silica nanoparticles. We have used a variety of techniques: optical and electron microscopy, microfluidics, and multiple light scattering. Using earlier studies of planar particle monolayers, we have been able to correlate the interfacial properties and the macroscopic temporal evolution of the foam. This has shed light on the origin of the absence of coarsening of particle-stabilised foams. Such particle-stabilised foams appear to be the only known foam system where coarsening is inhibited by surface elasticity.

3.
Phys Rev Lett ; 98(5): 058303, 2007 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-17358910

RESUMO

We report the results of fluid transport experiments in aqueous foams under microgravity. Using optical and electrical methods, the capillary motion of the foam fluid and the local liquid fractions are monitored. We show that foams can be continuously wetted up to high liquid fractions ( approximately 0.3), without any bubble motion instabilities. Data are compared to drainage models: For liquid fractions above 0.2, discrepancies are found and identified. These new results on foam hydrodynamics and structure can be useful for other poroelastic materials, such as plants and biological tissues.

4.
J Colloid Interface Sci ; 300(2): 735-43, 2006 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-16677666

RESUMO

We have studied bubble motion within a column of foam allowed to undergo free drainage. We have measured bubble motion upward with time and as a function of their initial positions. Depending on the gas used, which sets the coarsening and drainage rates, different bubble upward motion types have been identified (constant speed, acceleration or deceleration) and explained in relation with liquid downward flows. The proofs of the consistency between bubble upward motion and liquid downward flow are obtained both by comparing the bubble motion curves to the liquid drainage ones, and by comparing the time variations of the liquid fraction extracted from bubble motion to direct liquid fraction measurements by electrical conductimetry. The agreement between bubble position tracking and electrical conductivity shows in particular that it is possible to determine the drainage regime from such simple bubble motion measurements. This work also allowed us to demonstrate a special case of foam coarsening and expansion, occurring when the foam gas is less soluble than the outside one, caused by diffusion of this external gas into the foam. All these results allow us to build a picture of drainage and coarsening seen from the bubble point of view.

5.
Eur Phys J E Soft Matter ; 19(2): 195-202, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16505946

RESUMO

We have studied the drainage of foams made from Newtonian and non-Newtonian solutions of different viscosities. Forced-drainage experiments first show that the behavior of Newtonian solutions and of shear-thinning ones (foaming solutions containing either Carbopol or Xanthan) are identical, provided one considers the actual viscosity corresponding to the shear rate found inside the foam. Second, for these fluids, a drainage regime transition occurs as the bulk viscosity is increased, illustrating a coupling between surface and bulk flow in the channels between bubbles. The properties of this transition appear different from the ones observed in previous works in which the interfacial viscoelasticity was varied. Finally, we show that foams made of solutions containing long flexible PolyEthylene Oxide (PEO) molecules counter-intuitively drain faster than foams made with Newtonian solutions of the same viscosity. Complementary experiments made with fluids having all the same viscosity but different responses to elongational stresses (PEO-based Boger fluids) suggest an important role of the elastic properties of the PEO solutions on the faster drainage.

6.
Eur Phys J E Soft Matter ; 15(1): 53-60, 2004 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-15449195

RESUMO

We have performed forced drainage experiments on aqueous foams of bubble diameters D varying from 0.18 to 8 mm, and made with different surfactant and protein solutions (providing different surface viscoelastic properties). Changing bubble size or surface properties allows to evolve between two drainage regimes, the respective dimensionless permeabilities also varying with these parameters. We show that the bubble size and surface properties can be incorporated into a single surface mobility parameter that controls the transition between the two drainage regimes. The permeability measurements indicate how do the hydrodynamic resistances of the foam channels and nodes depend on surface mobility. Taking advantage of the large range of experimental conditions, leading to a variation of the mobility parameter over more than 3 decades, a simple and consistent description of both the drainage regimes and the transition in between them is obtained. For the smallest bubbles (D < 0.5 mm) anomalous behaviors are observed and discussed.


Assuntos
Biofísica/métodos , Aerossóis/química , Modelos Estatísticos , Permeabilidade , Dodecilsulfato de Sódio/química , Propriedades de Superfície , Tensão Superficial
7.
Appl Opt ; 40(24): 4210-4, 2001 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-18360457

RESUMO

The multiple scattering of light by aqueous foams is systematically studied as a function of wavelength, bubble size, and liquid fraction. Results are analyzed in terms of the transport mean free path of the photons and an extrapolation length ratio for the diffuse photon concentration field. The wavelength dependence is minimal and may be attributed entirely to the wavelength dependence of the refractive index of water rather than thin-film interference effects. The transport mean free path is found to be proportional to the bubble diameter and the reciprocal of the square root of liquid fraction. The extrapolation length ratio varies almost linearly with liquid fraction between the values for water-glass-air and air-glass-air interfaces.

8.
Phys Rev Lett ; 84(13): 3001-4, 2000 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-11018996

RESUMO

Gas bubbles in an aqueous foam can be unjammed, or fluidized, by introducing a forced flow of the continuous liquid phase at a sufficiently high rate. We observe that the resulting bubble dynamics are spatially inhomogeneous, exhibiting a sequence of instabilities vs increasing flow rate. First irregular swirls appear, then a single convective roll, and finally a series of stratified convection rolls each with a different average bubble size.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...