Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Carbohydr Polym ; 254: 117399, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33357889

RESUMO

Starch based materials are attractive bio-based alternative to fully synthetic polymers. Native starch has however limited thermoprocessability and properties and must be modified. In order to improve the properties of starch-graft-poly(butyl-acrylate-co-styrene) copolymers via a process as green as possible, we report herein a new method for the dual functionalization of the polysaccharide via a one pot one step reaction in aqueous medium combining free radical polymerizations and ring-opening chemistry. Poly(butyl acrylate) or poly(butyl acrylate-co-styrene) (ca. 60 000 g/mol) and oligo(ε-caprolactone) were grafted on starch with a grafting percentage up to 75 %. The copolymers show two glass transition temperatures: one around 55-60 °C related to starch and a second attributed to the grafted vinyl polymers, from -46 °C to 20 °C depending on butyl acrylate/styrene ratio. The resulting dual functionalized materials exhibit excellent mechanical properties, with elongation at break in the range 20-210 %, while single functionalized starch shows less than 5 %.


Assuntos
Polimerização , Amido/química , Água/química , Acrilatos/química , Resinas Acrílicas/química , Caproatos/química , Radicais Livres/química , Lactonas/química , Poliestirenos/química , Temperatura de Transição , Compostos de Vinila/química
2.
Polymers (Basel) ; 9(11)2017 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-30965895

RESUMO

The insertion of rigid monomers such as isosorbide into poly(ethylene terephthalate) (PET) allows for the access of polymers with improved properties, notably in terms of thermal stability. This biobased monomer is however poorly reactive, and harsh reaction conditions lead to color concerns regarding the resulting polymer. This has motivated the development of catalytic systems enabling an increase of the reaction rate and a good coloration. In this study, we have assessed bimetallic catalytic systems based on the main metals used for PET catalysis, i.e., antimony, germanium and titanium, for the synthesis of poly(ethylene terephthalate-co-isosorbide terephthalate) (PEIT). The Sb2O3/Ti(OiPr)4 combination leads to a high reaction rate while maintaining an acceptable coloration. On the other hand, combining Sb2O3 with GeO2 affords the formation of poly(ethylene terephthalate-co-isosorbide terephthalate) without coloration concerns and a reaction rate higher than that observed using the single metal catalysts. Molecular weights and microstructure including diethyleneglycol (DEG) and isosorbide contents are also discussed, together with the thermal properties of the resulting PEIT. The GeO2/Ti(OiPr)4 is also assessed, and leads to average performances.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...