Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Aquat Toxicol ; 96(2): 109-14, 2010 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-19883948

RESUMO

The effect of core-shell copper oxide nanoparticles with sizes smaller than 100 nm on cellular systems is still not well understood. Documenting these effects is pressing since core-shell copper oxide nanoparticles are currently components of pigments used frequently as antifouling paint protecting boats from crustacean, weed and slime fouling. However, the use of such paints may induce strong deteriorative effects on different aquatic trophic levels that are not the intended targets. Here, the toxic effect of core-shell copper oxide nanoparticles on the green alga, Chlamydomonas reinhardtii was investigated with regards to the change of algal cellular population structure, primary photochemistry of photosystem II and reactive oxygen species formation. Algal cultures were exposed to 0.004, 0.01 and 0.02 g/l of core-shell copper oxide nanoparticles for 6h and a change in algal population structure was observed, while the formation of reactive oxygen species was determined using the 2',7'-dichlorodihydrofluorescein diacetate marker measured by flow cytometry. For the study of the photosystem II primary photochemistry we investigated the change in chlorophyll a rapid rise of fluorescence. We found that core-shell copper oxide nanoparticles induced cellular aggregation processes and had a deteriorative effect on chlorophyll by inducing the photoinhibition of photosystem II. The inhibition of photosynthetic electron transport induced a strong energy dissipation process via non-photochemical pathways. The deterioration of photosynthesis was interpreted as being caused by the formation of reactive oxygen species induced by core-shell copper oxide nanoparticles. However, no formation of reactive oxygen species was observed when C. reinhardtii was exposed to the core without the shell or to the shell only.


Assuntos
Chlamydomonas reinhardtii/efeitos dos fármacos , Cobre/toxicidade , Nanopartículas Metálicas/toxicidade , Complexo de Proteína do Fotossistema II/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Forma Celular/efeitos dos fármacos , Chlamydomonas reinhardtii/crescimento & desenvolvimento , Espécies Reativas de Oxigênio/metabolismo
2.
J Photochem Photobiol B ; 96(1): 24-9, 2009 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-19427227

RESUMO

In this study, we investigated the energy dissipation processes via photosystem II and photosystem I activity in green alga Chlamydomonas reinhardtii exposed to dichromate inhibitory effect. Quantum yield of photosystem II and also photosystem I were highly decreased by dichromate effect. Such inhibition by dichromate induced strong quenching effect on rapid OJIP fluorescence transients, indicating deterioration of photosystem II electron transport via plastoquinone pool toward photosystem I. The decrease of energy dissipation dependent on electron transport of photosystem II and photosystem I by dichromate effect was associated with strong increase of non-photochemical energy dissipation processes. By showing strong effect of dichromate on acceptor side of photosystem I, we indicated that dichromate inhibitory effect was not associated only with PSII electron transport. Here, we found that energy dissipation via photosystem I was limited by its electron acceptor side. By the analysis of P700 oxido-reduction state with methylviolagen as an exogenous PSI electron transport mediator, we showed that PSI electron transport discrepancy induced by dichromate effect was also caused by inhibitory effect located beyond photosystem I. Therefore, these results demonstrated that dichromate has different sites of inhibition which are associated with photosystem II, photosystem I and electron transport sink beyond photosystems.


Assuntos
Chlamydomonas reinhardtii/metabolismo , Complexo de Proteína do Fotossistema I/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Dicromato de Potássio/farmacologia , Poluentes Químicos da Água/farmacologia , Animais , Chlamydomonas reinhardtii/crescimento & desenvolvimento , Clorofila/química , Clorofila/metabolismo , Transporte de Elétrons , Metabolismo Energético , Corantes Fluorescentes/química , Corantes Fluorescentes/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA