Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem B ; 125(42): 11742-11750, 2021 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-34662140

RESUMO

Elucidating how the intermolecular interactions of a covalently bonded fluorine atom are similar to and different from those of the other halogen atoms will be helpful for a better unified understanding of them. In the present study, the case of hydrogen fluoride is theoretically studied from this viewpoint by using the techniques of electron density analysis, molecular dynamics of liquid, and others. It is shown that the extra-point model, which locates an additional charge site on the line extended from (not within) the covalent bond and has been adopted for halogen-bonding systems as a key to the generation of proper stability and directionality, works well also in this case. A significantly bent hydrogen-bond configuration, which is characteristic of the intermolecular interactions of hydrogen fluoride, is reasonably well reproduced, meaning that it is a manifestation of the latent halogen-bonding ability, which is hidden by the strongly electronegative nature.


Assuntos
Flúor , Halogênios , Ácido Fluorídrico , Hidrogênio , Ligação de Hidrogênio
2.
Mov Disord ; 36(7): 1634-1643, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33570211

RESUMO

BACKGROUND: Mutations in PRKN are the most common cause of autosomal recessive juvenile parkinsonism. The objective of this study was to investigate the association between genotype and pathology in patients with PRKN mutations. METHODS: We performed a sequence and copy number variation analysis of PRKN, mRNA transcripts, Parkin protein expression, and neuropathology in 8 autopsied patients. RESULTS: All the patients harbored biallelic PRKN mutations. Two patients were homozygous and heterozygous, respectively, for the missense mutation p.C431F. Seven patients had exon rearrangements, including 2 patients from a single family who harbored a homozygous deletion of exon 4, and 3 patients who carried a homozygous duplication of exons 6-7, a homozygous duplication of exons 10-11, and a heterozygous duplication of exons 2-4. In the other 2 patients, we found a compound heterozygous duplication of exon 2, deletion of exon 3, and a heterozygous duplication of exon 2. However, sequencing of cDNA prepared from mRNA revealed 2 different transcripts derived from triplication of exon 2 and deletion of exons 2-3 and from duplication of exons 2-4 and deletion of exons 3-4. Western blotting and immunohistochemistry revealed faint or no expression of Parkin in their brains. In the substantia nigra pars compacta, a subfield-specific pattern of neuronal loss and mild gliosis were evident. Lewy bodies were found in 3 patients. Peripheral sensory neuronopathy was a feature. CONCLUSIONS: Genomic and mRNA analysis is needed to identify the PRKN mutations. Variable mutations may result in no or little production of mature Parkin and the histopathologic features may be similar. © 2021 International Parkinson and Movement Disorder Society.


Assuntos
Variações do Número de Cópias de DNA , Ubiquitina-Proteína Ligases , Variações do Número de Cópias de DNA/genética , Homozigoto , Humanos , Mutação/genética , Deleção de Sequência , Ubiquitina-Proteína Ligases/genética
3.
J Chem Phys ; 153(17): 174302, 2020 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-33167658

RESUMO

The form of the electron density change (or difference) is usable as a kind of fingerprint of the electronic structural origin or mechanism that gives rise to intermolecular interactions. Here, this method is applied to halogen-bonding brominated systems to dissect the electric quadrupolar effect (arising from the anisotropic distribution of the valence electrons and intrinsic to the s2px 2py 2pz electronic configuration) and the polarization effect (induced by a partial negative charge of the halogen-bond accepting atom). It is shown that a suitable location of the "extra point" for placing a partial positive charge to represent the former is crucial and is clearly found from the electron density difference from the spherically isotropic Br- ion, while the latter consists of the dipolar polarization of the Br atom and the delocalized polarization of the whole molecule. A practical way for application to molecular dynamics simulations, etc., to represent these two factors is discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...