Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem B ; 127(30): 6726-6733, 2023 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-37474256

RESUMO

In the present study, we investigated the intermolecular interactions between single-walled carbon nanotubes (SWCNTs) and encapsulated molecules by polarization resonance Raman microscopy. C70 encapsulated in SWCNTs is investigated under incident laser polarization parallel and perpendicular to the tube axis. We employed two excitation laser wavelengths 442 and 532 nm, which are in resonance with different electronic states of C70. Under 532 nm excitation, no distinct polarization dependence is found in the Raman spectral pattern, while under 442 nm excitation, a peak not previously seen for this excitation wavelength was clearly observed for parallel excitation. This result can be explained by the modulation of the resonance Raman process via a charge transfer contribution between C70 and the SWCNTs, which is sensitive to the incident polarization as well as the excitation wavelength. The intensity of the local electronic field inside a SWCNT is higher for the parallel excitation than the perpendicular excitation when the nanotubes are in a bundle. The results can be explained by field localization effects at the nanotube walls, qualitatively supported by finite-difference time-domain simulations.

2.
J Phys Chem A ; 126(10): 1755-1760, 2022 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-35259872

RESUMO

We developed a new method for obtaining surface-enhanced Raman scattering (SERS) spectra with extremely high sensitivity and spectral resolution. In this method, thousands of SERS spectra are acquired, followed by a data selection procedure based on density-based spatial clustering of applications with noise (DBSCAN). Each spectrum is recorded by exposure to a single nanosecond laser pulse to avoid the effect of time averaging. The reconstructed spectrum consists of the data that belong to the clusters. The method was applied to a crystal violet aqueous solution with a concentration of 10-7 mol/L. The results suggest that several minor Raman peaks were successfully recovered, which cannot be detected in conventional SERS measurements. Moreover, the method is also effective for separately observing Raman peaks that overlap with other neighboring peaks. This method extends the possibilities of SERS and will contribute to future high-resolution spectroscopy in condensed phases.

3.
Sci Adv ; 6(23): eaba4179, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32537508

RESUMO

Nanolight sources, which are based on resonant excitation of plasmons near a sharp metallic nanostructure, have attracted tremendous interest in the vast research fields of optical nanoimaging. However, being a resonant phenomenon, this ideally works only for one wavelength that resonates with the plasmons. Multiple wavelengths of light in a broad range confined to one spot within a nanometric volume would be an interesting form of light, useful in numerous applications. Plasmon nanofocusing can generate a nanolight source through the propagation and adiabatic compressions of plasmons on a tapered metallic nanostructure, which is independent of wavelength, as it is based on the propagation, rather than resonance, of plasmons. Here, we report the generation of a white nanolight source spanning over the entire visible range through plasmon nanofocusing and demonstrate spectral bandgap nanoimaging of carbon nanotubes. Our experimental demonstration of the white nanolight source would stimulate diverse research fields toward next-generation nanophotonic technologies.

4.
Sci Rep ; 9(1): 2656, 2019 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-30804466

RESUMO

Plasmonic nanolens, a 3-dimensional tapered arrangement of metallic nanorod chains, holds a great promise as a new plasmonics-based optical nano-imaging technique. While multiple nanorod chains can transfer the near-field signal originating from a sample to an image at a distance larger than a micro-meter, where each nanorod chain contributes in forming one pixel in the image, the tapered arrangement of the nanorod chains with a certain taper angle allows image magnification. We experimentally demonstrate the feature of image formation and magnification in a nanolens by fabricating a tapered arrangement of two silver nanorod chains, which were separated by a distance smaller than the diffraction limit at one end and larger than the diffraction limit at the other end. We placed two nano-sized optical sources of quantum dots near the first ends of the chains, which served as two subwavelength objects. In the optical measurement, we demonstrated that the unresolved subwavelength optical sources could be imaged at the other ends of the chains and were well resolved in accordance with the magnification feature of a nanolens. This verification is an experimental proof of the image magnification, and an important step toward the realization of plasmonic nanolens.

5.
ACS Nano ; 12(3): 2498-2505, 2018 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-29481065

RESUMO

A van der Waals (vdW) heterostructure composed of multivalley systems can show excitonic optical responses from interlayer excitons that originate from several valleys in the electronic structure. In this work, we studied photoluminescence (PL) from a vdW heterostructure, WS2/MoS2, deposited on hexagonal boron nitride (hBN) flakes. PL spectra from the fabricated heterostructures observed at room temperature show PL peaks at 1.3-1.7 eV, which are absent in the PL spectra of WS2 or MoS2 monolayers alone. The low-energy PL peaks we observed can be decomposed into three distinct peaks. Through detailed PL measurements and theoretical analysis, including PL imaging, time-resolved PL measurements, and calculation of dielectric function ε(ω) by solving the Bethe-Salpeter equation with G0 W0, we concluded that the three PL peaks originate from direct K-K interlayer excitons, indirect Q-Γ interlayer excitons, and indirect K-Γ interlayer excitons.

6.
Nanoscale ; 8(10): 5634-40, 2016 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-26892672

RESUMO

Near-field scanning optical microscopy (NSOM) combined with plasmon nanofocusing is a powerful nano-analytical tool due to its attractive feature of efficient background suppression as well as light energy compression to the nanoscale. In plasmon nanofocusing-based NSOM, the metallic tip plays an important role in inducing plasmon nanofocusing. It is, however, very challenging to control plasmonic properties of tips for plasmon nanofocusing with existing tip fabrication methods, even though the plasmonic properties need to be adjusted to experimental environments such as the sample or excitation wavelength. In this study, we propose an efficient tip design and fabrication which enable one to actively control plasmonic properties for efficient plasmon nanofocusing. Because our method offers flexibility in the material and structure of tips, one can easily modify the plasmonic properties depending on the requirements. Importantly, through optimization of the plasmonic properties, we achieve almost 100% reproducibility in plasmon nanofocusing in our experiments. This new approach of tip fabrication makes plasmon nanofocusing-based NSOM practical and reliable, and opens doors for many scientists working in related fields.

7.
Anal Sci ; 31(5): 451-4, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25958876

RESUMO

Temperature-dependent photodegradation during UV-resonance Raman spectroscopy was investigated. Photodegradation was quantitatively probed by monitoring the temporal evolution of UV-resonance Raman spectra obtained from bacteriochlorophyll (BChl) showing, resonance effect at a 355-nm excitation wavelength. At 80 K, the molecular photodecomposition rate was 5-times lower than that at room temperature. The decomposition rates of BChl were analyzed by the Arrhenius formula, indicating that the mechanism of photodegradation includes a thermal process having an activation energy of 1.4 kJ/mol.


Assuntos
Bacterioclorofila A/química , Fotólise , Análise Espectral Raman , Temperatura , Raios Ultravioleta , Estrutura Molecular
8.
ACS Nano ; 8(10): 10187-95, 2014 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-25171468

RESUMO

Polarization analysis in tip-enhanced Raman spectroscopy (TERS) is of tremendous advantage, as it allows one to study highly directional intrinsic properties of a sample at the nanoscale. However, neither evaluation nor control of the polarization properties of near-field light in TERS is as straightforward as in usual far-field illumination, because of the random metallic nanostructure attached to the tip apex. In this study, we have developed a method to successfully analyze the polarization of near-field light in TERS from the scattering pattern produced by the induced dipole in the metallic tip. Under dipole approximation, we measured the image of the dipole at a plane away from the focal plane, where the information about the direction of the dipole oscillation was intact. The direction of the dipole oscillation was determined from the defocused pattern, and then the polarization of near-field light was evaluated from the oscillation direction by calculating the intensity distribution of near-field light through Green's function. After evaluating the polarization of some fabricated tips, we used those tips to measure TERS images from single-walled carbon nanotubes and confirmed that the contrast of the TERS image depended on the oscillation direction of the dipole, which were also found in excellent agreement with the calculated TERS images, verifying that the polarization of the near-field was quantitatively estimated by our technique. Our technique would lead to better quantitative analysis in TERS imaging with consideration of polarization impact, giving a better understanding of the behavior of nanomaterials.

9.
Phys Rev Lett ; 111(21): 216101, 2013 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-24313506

RESUMO

The electronic properties of single walled carbon nanotubes (SWNTs) can change with a slight deformation, such as the one caused by the pressure of one SWNT crossing over the other in an "X" shape. The effect, however, is extremely localized. We present a tip-enhanced Raman investigation of the extremely localized semiconductor-to-metal transition of SWNTs in such a situation, where we can see how the Fano interaction, which is a Raman signature of metallic behavior, grows towards the junction and is localized within a few nanometers of its vicinity. After exploring the deconvoluted components of the G-band Raman mode, we were able to reveal the change in electronic properties of a SWNT at extremely high spatial resolution along its length.

10.
J Phys Chem Lett ; 3(10): 1295-300, 2012 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-26286773

RESUMO

Polarization imaging reveals unique characteristics of samples, such as molecular symmetry, orientation, or intermolecular interactions. Polarization techniques extend the ability of conventional spectroscopy to enable the characterization and identification of molecular species. In the early days of spectroscopy, it was considered that a set of polarizers placed in the illumination and the detection paths was enough to enable polarization analysis. However, with the development of new microscope imaging techniques, such as high-resolution microscopy, nonlinear spectroscopic imaging, and near-field microscopy, the inevitable polarization changes caused by external optical components needs to be discussed. In this Perspective, we present some of the hot topics that are specific to high-spatial-resolution microscopy and introduce recent related work in the field. Among the many spectroscopic techniques available, we focus in particular on Raman spectroscopy because Raman tensors are widely used in pure and applied sciences to study the symmetry of matter.

11.
Opt Express ; 19(13): 12375-83, 2011 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-21716475

RESUMO

Biological applications where nanoparticles are used in a cell environment with laser irradiation are rapidly emerging. Investigation of the localized heating effect due to the laser irradiation on the particle is required to preclude unintended thermal effects. While bulk temperature rise can be determined using macroscale measurement methods, observation of the actual temperature within the nanoscale domain around the particle is difficult and here we propose a method to measure the local temperature around a single gold nanoparticle in liquid, using white light scattering spectroscopy. Using 40-nm-diameter gold nanoparticles coated with thermo-responsive polymer, we monitored the localized heating effect through the plasmon peak shift. The shift occurs due to the temperature-dependent refractive index change in surrounding polymer medium. The results indicate that the particle experiences a temperature rise of around 10 degrees Celsius when irradiated with tightly focused irradiation of ~1 mW at 532 nm.


Assuntos
Ouro/química , Temperatura Alta , Lasers , Nanopartículas , Nanotecnologia/métodos , Acrilamidas/química , Resinas Acrílicas , Biologia Celular/instrumentação , Desenho de Equipamento , Luz , Microscopia/instrumentação , Microscopia/métodos , Modelos Teóricos , Polímeros/química , Refratometria/instrumentação , Refratometria/métodos , Espalhamento de Radiação , Ressonância de Plasmônio de Superfície/instrumentação , Ressonância de Plasmônio de Superfície/métodos , Raios Ultravioleta
12.
Opt Express ; 17(8): 6509-18, 2009 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-19365475

RESUMO

We present a novel technique to tune the plasmon resonance of metal-coated silicon tips in the whole visible region without altering the tips original sharpness. The technique involves modification of the refractive index of silicon probe by thermal oxidization. Lowering the refractive index of silicon tip coated with metal shift the PRW of the metallic layer to shorter wavelength. Numerical simulation using FDTD agrees well with the empirical results. This novel technique is very useful in tip-enhanced Raman spectroscopy studies of various materials because plasmon resonance can tuned to a specific Raman excitation wavelength.


Assuntos
Metais/química , Refratometria/instrumentação , Ressonância de Plasmônio de Superfície/instrumentação , Transdutores , Desenho Assistido por Computador , Desenho de Equipamento , Análise de Falha de Equipamento , Refratometria/métodos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Ressonância de Plasmônio de Superfície/métodos
13.
J Chem Phys ; 125(24): 244706, 2006 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-17199367

RESUMO

Depending on each nitrogen atom of adenine molecule to which a silver atom of a metallic tip approaches, tip-enhanced near-field Raman spectroscopy may show a potential to achieve atomic site-selective detection sensitivity. Molecular vibrational calculations show that silver atoms and adenine molecule create several isomers generating specific vibrational modes of each isomer that are shifted or not observable in isolated adenine molecule itself. Here, the authors observe the specific vibrational modes and spectral shifts of isomers experimentally and are in good agreement with their calculations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...