Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bull Exp Biol Med ; 174(2): 265-268, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36600042

RESUMO

The development of hypogravitational motor syndrome is an essential negative consequence of weightlessness for humans; an important role in the pathogenesis of this syndrome is played by changes in axons of the spinal tracts. Myelinated fibers and transcriptome of the spinal cord were studied in mice exposed to hypogravity during a 30-day flight on a biosatellite. Morphometric analysis of myelinated fibers of the spinal tracts showed a decrease in the thickness of the myelin sheath. Analysis of spinal cord transcriptome revealed a decrease in the expression of genes involved in the myelination of nerve fibers. These results suggest that the processes of nerve fiber myelination are involved in the development of the hypogravitational motor syndrome under weightless conditions; the 7-day readaptation period was found to be insufficient for reversion of the negative changes in the myelinated fibers of the spinal cord.


Assuntos
Bainha de Mielina , Ausência de Peso , Humanos , Camundongos , Animais , Bainha de Mielina/patologia , Ausência de Peso/efeitos adversos , Axônios , Medula Espinal/patologia , Hipogravidade
2.
Bull Exp Biol Med ; 170(2): 264-267, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33263847

RESUMO

The data obtained by transcriptome analysis of lumbar spinal cord segments, sciatic nerve, and the respiratory diaphragm of the mice performed after a space flight on board Bion-M1 biosatellite were processed by bioinformatic methods aimed at elucidation of the regularities in hypogravity-induced transcriptome changes in various compartments of motor neurons. The study revealed abnormalities of axonal transport in spinal motor neurons provoked by weightlessness. These data agree with the results of electron microscopy examination of the spinal cord in experimental animals. In space group mice sacrificed on the landing day, the content of perinuclear ribosomes in lumbar motoneurons surpassed that in control mice or in the recovery group examined 1 week after the flight. The data corroborate our hypothesis on contribution of axonal transport disturbances into pathogenesis of hypogravity motor syndrome. They can be employed as a launching pad for further study of hypogravity-triggered motor disorder mechanisms in order to elaborate the preventive therapy against the development of hypogravity motor syndrome in space flights.


Assuntos
Axônios/metabolismo , Hipogravidade , Neurônios Motores/patologia , Animais , Transporte Axonal , Biologia Computacional , Vértebras Lombares/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Eletrônica , Ribossomos/metabolismo , Nervo Isquiático/metabolismo , Software , Voo Espacial , Medula Espinal/patologia , Transcriptoma , Ausência de Peso
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...