Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biomol Struct Dyn ; : 1-22, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37909465

RESUMO

Fatty acid synthase (FASN) enzyme is a lipid metabolism protein that provides the essential nutrients to cancer cells through de novo lipogenesis. Also, it plays a key role in other disease conditions, including obesity and inflammation. Hence, targeting the ß-ketoacyl reductase (KR) domain of FASN protein, an in-silico study was performed on some selective bioactive natural molecules following a repurposing strategy to identify FASN inhibitors. A molecular docking study followed by Absorption, Distribution, Metabolism and Excretion (ADME) predictions, binding free energy calculations, and molecular dynamics (MD) simulations were performed against FASN protein (PDB ID:6NNA) using Schrodinger Drug Discovery Software. Compounds rutin, trans-chlorogenic acid, norbergenin, myricetin, quercetin, physalolactone, quercetin-3-O-galactoside, kaempferol, asperulosidic acid, luteolin, curcumin, 12-deoxywithastramonolide, pedunculoside, hernandifoline, and withafastuosin E were identified as hits, presenting better docking scores (-16.2, -14.1, -12.3, -12.1, -12.0, -11.3, -10.3, -9.8, -9.3, -9.2, -9.1, -8.5, -8.4, -8.3, -7.9, respectively) and hydrogen bond interactions with Ser 2021 and Tyr 2034 amino acids of the KR domain of FASN. The MD simulations study of top five hits in complex with protein 6NNA uncovered the significant interactions leading to the stabilization of ligand with Root Mean Square Deviation (RMSD) below 5.00 Å and the stability was further validated by evaluating the root mean square fluctuation, solvent accessible surface area, and radius of gyration graphs. Also, the FASN inhibition effect of top four hits (50 µM) was >50% when corroborated using High Performance Liquid Chromatography HPLC-based estimation of palmitic acid in MCF-7 cells. Thus rutin, trans-chlorogenic acid, norbergenin, and myricetin are proposed as prospective FASN inhibitory leads. Overall, the results provided useful modifications in pharmacophoric features that could improve the inhibitory effect.Communicated by Ramaswamy H. Sarma.

2.
Int Immunopharmacol ; 103: 108494, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34973530

RESUMO

The study aimed to identify small molecules having potentiality in alleviating renal injury. Two natural compounds cyclo(Val-Pro) (1) and cyclo(Leu-Hydroxy-Pro) (2) were first evaluated under acute renal injury model of ischemic reperfusion at different doses of 25, 50 and 75 mg/kg body weight. Further, the compounds were subjected to antimycin A-induced ischemic in vitro study (NRK-52E cell lines). Both the compounds significantly decreased plasma IL-1ß levels (P < 0.05). Also, the mRNA expression levels of inflammatory markers (TNF-α, IL-6 and IL-1ß) and renal injury markers (KIM-1, NGAL, α-GST and π-GST) in the renal tissues were significantly alleviated (P < 0.01) along with the improvement in histological damage and control over neutrophil infiltration as a result of ischemic reperfusion. The in vitro study revealed the protective effect against antimycin A-induced cytotoxicity (P < 0.05) and antiapoptotic effect acting through the regulation of Bax, caspase 3 (pro and cleaved) and BCL2 with reduction in Annexin+PI+ cells. Further, the compound cyclo(Val-Pro) (1) was evaluated (50 mg/kg body weight dose) in chronic unilateral ureter obstruction model of renal injury in mice and TGF-ß-induced in vitro fibrotic model (NRK-49F cell lines). Cyclo(Val-Pro) (1) significantly reduced the expression levels of fibrotic markers (collagen-1, α-SMA and TGF-ß) and showed marked alleviation of renal fibrosis (sirius red staining). Also, the proliferation of TGF-ß-induced NRK-49F cells was significantly reduced along with decreased levels of collagen-1 and α-SMA in immunohistochemistry studies. In conclusion, the compounds significantly abrogated ischemic injury by inhibiting renal inflammation and tubular epithelial apoptosis. Further, cyclo (Val-Pro) (1) exhibited significant anti-fibrotic activity through the inhibition of fibroblast activation and proliferation. Thus, these proline-based cyclic dipeptides are recommended as drug leads for treating renal injury.


Assuntos
Injúria Renal Aguda , Ureter , Injúria Renal Aguda/patologia , Animais , Dipeptídeos , Fibrose , Rim/patologia , Camundongos , Prolina , Pseudomonas , Reperfusão
3.
Methods Mol Biol ; 2248: 271-279, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33185884

RESUMO

Tumor necrosis factor superfamily (TNFSF) ligands and receptors have distinctive structural characters that link them to cell growth, cell survival, or cell death. Some of these can activate both inflammatory and apoptotic pathways, depending on target cell types and other extrinsic stimuli. Many of the TNF receptor superfamily molecules are expressed in cells of the immune system, which may be central to autoimmune and inflammatory diseases as well as cancer. However, the function of TNFSF members is not just restricted to immune cells. Members of TNFSF have been linked to an array of pathophysiologies, including cancer, neurologic, cardiovascular, pulmonary, autoimmune, and metabolic diseases. TNF-α of TNFSF is a pro-inflammatory cytokine produced by macrophages/monocytes, widely implicated in the pathogenesis of inflammatory disorders. In view of these facts, TNF-α has been recommended as an important target for discovering drugs for autoimmune and inflammatory diseases and cancer. Various cell-based assays to understand the role of TNF-α in inflammation and to estimate the concentrations of TNF-α levels in body fluids such as plasma, synovium, etc., are being followed by researchers. In this chapter, methods of cell viability assay, ELISA assay, RT-PCR, and western blot analysis for estimating LPS-induced TNF-α protein expressions are described in detail.


Assuntos
Bioensaio , Fator de Necrose Tumoral alfa/metabolismo , Animais , Bioensaio/métodos , Western Blotting , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Citocinas/genética , Citocinas/metabolismo , Ensaio de Imunoadsorção Enzimática , Expressão Gênica , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Células RAW 264.7 , Reação em Cadeia da Polimerase em Tempo Real , Fator de Necrose Tumoral alfa/biossíntese , Fator de Necrose Tumoral alfa/genética
4.
Nat Prod Res ; 20(13): 1231-6, 2006 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17127514

RESUMO

A new flavonol glycoside, kaempferol 3-O-alpha-L-arabinopyranosyl-7-O-beta-D-glucopyranoside (1), has been isolated from methanol extract of leaves of Datura suaveolens (Solanaceae), along with six other known compounds, which include kaempferol 3-O-alpha-L-arabinopyranoside (2), 3-phenyl lactic acid, 3-(3-indolyl) lactic acid, and its methyl ester, physalindicanol A and physalindicanol B. The structural elucidation of 1 and characterization of the known compounds are based on detailed spectral analysis (ESI-FTICR-MS and 2D-NMR). This is the first report of isolation of these compounds from this plant.


Assuntos
Datura/química , Glicosídeos/isolamento & purificação , Quempferóis/isolamento & purificação , Extratos Vegetais/isolamento & purificação , Glicosídeos/química , Quempferóis/química , Estrutura Molecular , Ressonância Magnética Nuclear Biomolecular , Rotação Ocular , Extratos Vegetais/química , Folhas de Planta/química , Espectrometria de Massas por Ionização por Electrospray , Espectrofotometria Infravermelho , Espectrofotometria Ultravioleta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...