Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Proteome Res ; 18(5): 2287-2309, 2019 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-31017792

RESUMO

The nose-horned viper, its nominotypical subspecies Vipera ammodytes ammodytes ( Vaa), in particular, is, medically, one of the most relevant snakes in Europe. The local and systemic clinical manifestations of poisoning by the venom of this snake are the result of the pathophysiological effects inflicted by enzymatic and nonenzymatic venom components acting, most prominently, on the blood, cardiovascular, and nerve systems. This venom is a very complex mixture of pharmacologically active proteins and peptides. To help improve the current antivenom therapy toward higher specificity and efficiency and to assist drug discovery, we have constructed, by combining transcriptomic and proteomic analyses, the most comprehensive library yet of the Vaa venom proteins and peptides. Sequence analysis of the venom gland cDNA library has revealed the presence of messages encoding 12 types of polypeptide precursors. The most abundant are those for metalloproteinase inhibitors (MPis), bradykinin-potentiating peptides (BPPs), and natriuretic peptides (NPs) (all three on a single precursor), snake C-type lectin-like proteins (snaclecs), serine proteases (SVSPs), P-II and P-III metalloproteinases (SVMPs), secreted phospholipases A2 (sPLA2s), and disintegrins (Dis). These constitute >88% of the venom transcriptome. At the protein level, 57 venom proteins belonging to 16 different protein families have been identified and, with SVSPs, sPLA2s, snaclecs, and SVMPs, comprise ∼80% of all venom proteins. Peptides detected in the venom include NPs, BPPs, and inhibitors of SVSPs and SVMPs. Of particular interest, a transcript coding for a protein similar to P-III SVMPs but lacking the MP domain was also found at the protein level in the venom. The existence of such proteins, also supported by finding similar venom gland transcripts in related snake species, has been demonstrated for the first time, justifying the proposal of a new P-IIIe subclass of ancestral SVMP precursor-derived proteins.


Assuntos
Metaloproteases/genética , Proteoma/genética , RNA Mensageiro/genética , Transcriptoma , Venenos de Víboras/química , Viperidae/genética , Sequência de Aminoácidos , Inibidores da Enzima Conversora de Angiotensina/química , Inibidores da Enzima Conversora de Angiotensina/metabolismo , Animais , Antivenenos/química , Antivenenos/metabolismo , Desintegrinas/classificação , Desintegrinas/genética , Desintegrinas/metabolismo , Biblioteca Gênica , Ontologia Genética , Lectinas Tipo C/classificação , Lectinas Tipo C/genética , Lectinas Tipo C/metabolismo , Metaloproteases/classificação , Metaloproteases/metabolismo , Anotação de Sequência Molecular , Peptídeos Natriuréticos/classificação , Peptídeos Natriuréticos/genética , Peptídeos Natriuréticos/metabolismo , Fosfolipases A2 Secretórias/classificação , Fosfolipases A2 Secretórias/genética , Fosfolipases A2 Secretórias/metabolismo , Inibidores de Proteases/química , Inibidores de Proteases/metabolismo , Proteoma/classificação , Proteoma/metabolismo , Proteômica/métodos , RNA Mensageiro/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Serina Proteases/classificação , Serina Proteases/genética , Serina Proteases/metabolismo , Venenos de Víboras/genética , Venenos de Víboras/metabolismo , Viperidae/metabolismo
2.
J Proteomics ; 146: 34-47, 2016 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-27327134

RESUMO

UNLABELLED: Vipera berus berus (Vbb) is the most widely distributed and Vipera ammodytes ammodytes (Vaa) the most venomous viper in Europe. In particular areas of the Old continent their toxic bites constitute a considerable public health problem. To make the current envenomation therapy more effective we have analysed the proteome of Vbb venom and compared it with that of Vaa. We found the proteome of Vbb to be much less complex and to contain smaller levels of particularly snaclecs and sPLA2s. Snaclecs are probably responsible for thrombocytopenia. The neurotoxic sPLA2s, ammodytoxins, are responsible for the most specific feature of the Vaa venom poisoning - induction of signs of neurotoxicity in patients. These molecules were not found in Vbb venom. Both venoms induce haemorrhage and coagulopathy in man. As Vaa and Vbb venoms possess homologous P-III snake venom metalloproteinases, the main haemorrhagic factors, the severity of the haemorrhage is dictated by concentration and specific activity of these molecules. The much greater anticoagulant effect of Vaa venom than that of Vbb venom lies in its higher extrinsic pathway coagulation factor-proteolysing activity and content of ammodytoxins which block the prothrombinase complex formation. BIOLOGICAL SIGNIFICANCE: Envenomations by venomous snakes constitute a considerable public health problem worldwide, and also in Europe. In the submitted work we analysed the venom proteome of Vipera berus berus (Vbb), the most widely distributed venomous snake in Europe and compared it with the venom proteome of the most venomous viper in Europe, Vipera ammodytes ammodytes (Vaa). We have offered a possible explanation, at the molecular level, for the differences in clinical pictures inflicted by the Vbb and Vaa venoms. We have provided an explanation for the effectiveness of treatment of Vbb envenomation by Vaa antiserum and explained why full protection of Vaa venom poisoning by Vbb antiserum should not be always expected, especially not in cases of severe poisoning. The latter makes a strong case for Vaa antiserum production as we are faced with its shortage due to ceasing of production of two most frequently used products.


Assuntos
Proteoma , Venenos de Víboras/toxicidade , Viperidae , Animais , Antivenenos/química , Antivenenos/uso terapêutico , Hemorragia/induzido quimicamente , Metaloproteases , Fosfolipases A2 Secretórias , Especificidade da Espécie
3.
Biochimie ; 109: 78-87, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25549999

RESUMO

A high molecular mass metalloproteinase with α-fibrinogenolytic activity, termed VaF1, was purified from nose-horned viper (Vipera ammodytes ammodytes) venom. Subcutaneous injection of 9 µg of VaF1 did not induce bleeding in rats. Nevertheless, in vitro it degraded collagen IV, nidogen and fibronectin, components of the extracellular matrix, although with low efficacy and narrow specificity. VaF1 would be expected to exert anti-coagulant action, due to its hydrolysis of fibrinogen, factor X, prothrombin and plasminogen, plasma proteins involved in blood coagulation. The enzyme is a single-chain glycoprotein with a molecular mass of 49.7 kDa, as determined by mass spectrometry, and multiple isoelectric points centred at pH 5.8. The complete amino acid sequence of the precursor of VaF1 was deduced by cloning and sequencing its cDNA. Composed of metalloproteinase, disintegrin-like and cysteine-rich domains, VaF1 is a typical P-IIIa subclass snake venom metalloproteinase. Although it possesses a collagen-binding sequence in its disintegrin-like domain, VaF1 displayed no effect on collagen-induced platelet aggregation in vitro. Two consensus N-glycosylation sites are present in the sequence of VaF1, however, the extent of its glycosylation is low, only 5.2% of the total molecular mass. Interestingly, in standard experimental conditions VaF1 is not recognised by antiserum against the whole venom, so it can contribute to post-serotherapy complications, such as ineffective blood coagulation, in the envenomed patient.


Assuntos
Fibrinogênio/metabolismo , Metaloproteases/metabolismo , Venenos de Víboras/enzimologia , Viperidae/metabolismo , Sequência de Aminoácidos , Animais , Sequência de Bases , Western Blotting , Bovinos , Colágeno Tipo IV/metabolismo , Eletroforese em Gel de Poliacrilamida , Fator X/metabolismo , Fibronectinas/metabolismo , Hidrólise , Soros Imunes/imunologia , Soros Imunes/metabolismo , Metaloproteases/química , Metaloproteases/genética , Dados de Sequência Molecular , Plasminogênio/metabolismo , Estrutura Secundária de Proteína , Proteólise , Protrombina/metabolismo , Coelhos , Homologia de Sequência de Aminoácidos , Venenos de Víboras/imunologia , Viperidae/genética
4.
Toxicon ; 77: 93-104, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24269689

RESUMO

VaSP1, a serine proteinase from Vipera ammodytes ammodytes venom, is a glycosylated monomer of 31.5 kDa, as determined by MALDI mass spectrometry, showing multiple isoelectric points between pH 6.5 and pH 8.5. Partial amino acid sequencing of VaSP1 by Edman degradation and MS/MS analysis identified sequences which allowed its classification among the so-called snake venom serine proteinase homologues, members of the peptidase S1 family, however being devoid of the canonical catalytic triad. Only few representatives of this group have been identified so far with just two of them characterised in detail at the protein level. Despite substitution of His57 with Arg, VaSP1 possesses proteolytic activity which can be inhibited by Pefabloc, benzamidine, Zn²âº ions, DTT and trypsin inhibitor II, a Kunitz/BPTI group member. It hydrolyses N(α)-benzoyl-Phe-Val-Arg-p-NA, exhibiting Michaelis-Menten behaviour with K(m) = 48.2 µM and V(m) = 0.019 nM s⁻¹. The pH for optimal activity on tested substrate is around 9.0. VaSP1 also cleaves insulin B-chain, digesting it at positions His¹°-Leu¹¹, Ala¹4-Leu¹5 and Tyr¹6-Leu¹7. Furthermore, the novel serine proteinase is active towards wide array of proteins involved in haemostasis where its degradation of fibrinogen, fibrin, prothrombin, factor X and plasminogen in vivo probably results in depletion of coagulation factors in blood circulation. The possibility that VaSP1 possesses anticoagulant properties has been further indicated by its ability to prolong prothrombin time and activated partial thromboplastin time.


Assuntos
Serina Proteases/metabolismo , Inibidores de Serina Proteinase/farmacologia , Venenos de Víboras/enzimologia , Viperidae/metabolismo , Sequência de Aminoácidos , Animais , Benzamidinas/farmacologia , Coagulação Sanguínea/efeitos dos fármacos , Domínio Catalítico/genética , Eletroforese em Gel de Poliacrilamida , Concentração de Íons de Hidrogênio , Dados de Sequência Molecular , Tempo de Protrombina , Análise de Sequência de Proteína , Serina Proteases/classificação , Serina Proteases/genética , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Sulfonas/farmacologia , Zinco/farmacologia
5.
Toxicon ; 77: 141-55, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24269369

RESUMO

In the envenomation caused by a bite of Vipera ammodytes ammodytes, the most venomous snake in Europe, hemorrhage is usually the most severe consequence in man. Identifying and understanding the hemorrhagic components of its venom is therefore particularly important in optimizing medical treatment of patients. We describe a novel high molecular mass hemorrhagin, VaH4. The isolated molecule is a covalent dimer of two homologous subunits, VaH4-A and VaH4-B. Complete structural characterization of A and partial characterization of B revealed that both belong to the P-III class of snake venom metalloproteinases (SVMPs), comprising a metalloproteinase, a disintegrin-like domain and a cysteine-rich domain. However, neither VaH4-A nor VaH4-B possess the Cys174 involved in the inter-subunit disulphide bond of P-III SVMPs. A three-dimensional model of the VaH4 dimer suggests that Cys132 serves this function. This implies that dimers in the P-III class of SVMPs can be formed either between their Cys132 or Cys174 residues. The proteolytic activity and stability of VaH4 depend on Zn²âº and Ca²âº ions and the presence of glycosaminoglycans, which indicates physiological interaction of VaH4 with the latter element of the extracellular matrix (ECM). The molecular mass of VaH4, determined by MALDI/TOF mass spectrometry, is 110.2 kDa. N-deglycosylation reduced the mass of each monomer by 8.7 kDa. The two possible N-glycosylation sites in VaH4-A are located at completely different positions from those in homodimeric P-IIIc VaH3 from the same venom, however, without any evident functional implications. The hemorrhagic activity of this slightly acidic SVMP is ascribed to its hydrolysis of components of the ECM, particularly fibronectin and nidogen, and of some blood coagulation proteins, in particular the α-chain of fibrinogen. VaH4 is also significant medically as we found it cytotoxic against cancer cells and due to its substantial sequence similarity to ADAM/ADAMTS family of physiologically very important human proteins of therapeutic potential.


Assuntos
Hemorragia/induzido quimicamente , Metaloproteases/química , Metaloproteases/toxicidade , Modelos Moleculares , Viperidae/metabolismo , Sequência de Aminoácidos , Animais , Antineoplásicos/farmacologia , Sequência de Bases , Coagulação Sanguínea/efeitos dos fármacos , Adesão Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Colágeno , Dimerização , Combinação de Medicamentos , Fluorometria , Células HeLa , Humanos , Hidrólise/efeitos dos fármacos , Laminina , Metaloproteases/genética , Metaloproteases/metabolismo , Metaloproteases/farmacologia , Dados de Sequência Molecular , Proteoglicanas , Tempo de Protrombina , Análise de Sequência de DNA , Fatores de Tempo
6.
Biochimie ; 95(6): 1158-70, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23321470

RESUMO

Hemorrhage is the most potent manifestation of envenomation by Vipera ammodytes ammodytes (V. a. ammodytes) venom in man. A detailed description of the venom components contributing to this effect is thus medically very important. We have characterized a novel component, termed here VaH3, as a potently hemorrhagic snake venom metalloproteinase (SVMP). Its proteolytic activity and overall stability depend on the presence of Zn(2+) and Ca(2+) ions. The molecular mass of this slightly acidic molecule, determined by MALDI/TOF analysis, is 104 kDa. Chemical reduction and S-carbamoylmethylation result in a single monomer of 53.7 kDa. N-deglycosylation decreased this mass by 4.6 kDa. The complete amino acid sequence of VaH3 was determined by protein and cDNA sequencing, showing that each of the identical glycoprotein subunits comprise a metalloproteinase, a disintegrin-like domain and a cysteine-rich domain, VaH3 belongs to the P-IIIc class of SVMPs. It shows strong sequence similarity to vascular endothelial cell apoptosis-inducing reprolysins. Anti-ammodytagin antibodies strongly cross-reacted with VaH3 and completely neutralized its hemorrhagic activity in rat, despite the fact that the two hemorrhagic P-III SVMPs from V. a. ammodytes venom do not share a very high degree of amino acid sequence identity. In spite of its narrow proteolytic specificity, VaH3 rapidly cleaved some basal membrane and extracellular matrix proteins, such as collagen IV, fibronectin and nidogen. Moreover, it also hydrolyzed plasma proteins involved in blood coagulation. It is an effective α-fibrinogenase that cleaves prothrombin and factor X without activating them. The degradation of these proteins likely contributes to the hemorrhagic activity of VaH3. A three-dimensional model of VaH3 was built to help explain structure-function relationships in ADAM/ADAMTS, a family of proteins having significant therapeutic potential and substantial sequence similarity to VaH3.


Assuntos
Metaloendopeptidases/química , Metaloendopeptidases/metabolismo , Venenos de Víboras/química , Venenos de Víboras/metabolismo , Sequência de Aminoácidos , Animais , Eletroforese em Gel de Poliacrilamida , Humanos , Metaloendopeptidases/isolamento & purificação , Modelos Moleculares , Dados de Sequência Molecular , Estrutura Quaternária de Proteína , Ratos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Venenos de Víboras/isolamento & purificação
7.
Toxicon ; 57(5): 627-45, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21277886

RESUMO

Snake venom proteins that affect the haemostatic system can cause (a) lowering of blood coagulability, (b) damage to blood vessels, resulting in bleeding, (c) secondary effects of bleeding, e.g. hypovolaemic shock and organ damage, and (d) thrombosis. These proteins may, or may not, be enzymes. We review the data on the most relevant haemostatically active proteinases, phospholipases A2, L-amino acid oxidases and 5'-nucleotidases from snake venoms. We also survey the non-enzymatic effectors of haemostasis from snake venoms--disintegrins, C-type lectins and three-finger toxins. Medical applications have already been found for some of these snake venom proteins. We describe those that have already been approved as drugs to treat haemostatic disorders or are being used to diagnose such health problems. No clinical applications, however, currently exist for the majority of snake venom proteins acting on haemostasis. We conclude with the most promising potential uses in this respect.


Assuntos
Transtornos da Coagulação Sanguínea/diagnóstico , Hemostasia/fisiologia , L-Aminoácido Oxidase/metabolismo , Nucleotidases/metabolismo , Peptídeo Hidrolases/metabolismo , Fosfolipases A2/metabolismo , Venenos de Serpentes/metabolismo , Trombose/tratamento farmacológico , Animais , Desintegrinas/metabolismo , Descoberta de Drogas , Fator V , Fator X , Lectinas Tipo C/metabolismo , Proteína C , Proteína S
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...