Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 21204, 2022 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-36550187

RESUMO

Ozone is a phytotoxic air pollutant that has various damaging effects on plants, including chlorosis and growth inhibition. Although various physiological and genetic studies have elucidated some of the mechanisms underlying plant ozone sensitivity and lesion development, our understanding of plant response to this gas remains incomplete. Here, we show evidence for the involvement of certain apoplastic proteins called phytocyanins, such as AtUC5, that protect against ozone damage. Two representative ozone-inducible responses, chlorosis and stomatal closure, were suppressed in AtUC5-overexpressing plants. Analysis of transgenic plants expressing a chimeric protein composed of AtUC5 fused to green fluorescent protein indicated that this fusion protein localises to the apoplast of plant cells where it appears to suppress early responses to ozone damage such as generation or signalling of reactive oxygen species. Moreover, yeast two-hybrid analyses suggest that AtUC5 may physically interact with stress-related proteins such as copper amine oxidase and late embryogenesis abundant protein-like protein. In addition to AtUC5, other examined phytocyanins such as AtUC6 and AtSC3 could confer ozone tolerance to plants when overexpressed in A. thaliana, suggesting that these proteins act together to protect plants against oxidative stress factors.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Ozônio , Arabidopsis/metabolismo , Ozônio/farmacologia , Ozônio/metabolismo , Estresse Oxidativo , Proteínas de Arabidopsis/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Regulação da Expressão Gênica de Plantas
2.
Sci Rep ; 9(1): 18544, 2019 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-31811157

RESUMO

Autophagy plays crucial roles in the recycling of metabolites, and is involved in many developmental processes. Rice mutants defective in autophagy are male sterile due to immature pollens, indicating its critical role in pollen development. However, physiological roles of autophagy during seed maturation had remained unknown. We here found that seeds of the rice autophagy-deficient mutant Osatg7-1, that produces seeds at a very low frequency in paddy fields, are smaller and show chalky appearance and lower starch content in the endosperm at the mature stage under normal growth condition. We comprehensively analyzed the effects of disruption of autophagy on biochemical properties, proteome and seed quality, and found an abnormal activation of starch degradation pathways including accumulation of α-amylases in the endosperm during seed maturation in Osatg7-1. These results indicate critical involvement of autophagy in metabolic regulation in the endosperm of rice, and provide insights into novel autophagy-mediated regulation of starch metabolism during seed maturation.


Assuntos
Proteínas Relacionadas à Autofagia/genética , Autofagia/fisiologia , Endosperma/crescimento & desenvolvimento , Oryza/crescimento & desenvolvimento , Proteínas de Plantas/genética , Proteínas Relacionadas à Autofagia/metabolismo , Endosperma/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Mutação , Oryza/genética , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Amido/metabolismo , Regulação para Cima , alfa-Amilases/genética , alfa-Amilases/metabolismo
3.
Plant Cell Physiol ; 58(5): 914-924, 2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-28339978

RESUMO

An ozone-sensitive mutant was isolated from T-DNA-tagged lines of Arabidopsis thaliana. The T-DNA was inserted at a locus on chromosome 3, where two genes encoding glycolate oxidases, GOX1 and GOX2, peroxisomal enzymes involved in photorespiration, reside contiguously. The amounts of the mutant's foliar transcripts for these genes were reduced, and glycolate oxidase activity was approximately 60% of that of the wild-type plants. No difference in growth and appearance was observed between the mutant and the wild-type plants under normal conditions with ambient air under a light intensity of 100 µmol photons m-2 s-1. However, signs of severe damage, such as chlorosis and ion leakage from the tissue, rapidly appeared in mutant leaves in response to ozone treatment at a concentration of 0.2 µl l-1 under a higher light intensity of 350 µmol photons m-2 s-1 that caused no such symptoms in the wild-type plant. The mutant also exhibited sensitivity to sulfur dioxide and long-term high-intensity light. Arabidopsis mutants with deficiencies in other photorespiratory enzymes such as glutamate:glyoxylate aminotransferase and hydroxypyruvate reductase also exhibited ozone sensitivities. Therefore, photorespiration appears to be involved in protection against photooxidative stress caused by ozone and other abiotic factors under high-intensity light.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Ozônio/toxicidade , Oxirredutases do Álcool/genética , Oxirredutases do Álcool/metabolismo , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Hidroxipiruvato Redutase/genética , Hidroxipiruvato Redutase/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/genética , Transaminases/genética , Transaminases/metabolismo
4.
Proc Natl Acad Sci U S A ; 113(15): 4218-23, 2016 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-27035938

RESUMO

Stomatal movements regulate gas exchange, thus directly affecting the efficiency of photosynthesis and the sensitivity of plants to air pollutants such as ozone. The GARP family transcription factors GOLDEN 2-LIKE1 (GLK1) and GLK2 have known functions in chloroplast development. Here, we show that Arabidopsis thaliana (A. thaliana) plants expressing the chimeric repressors for GLK1 and -2 (GLK1/2-SRDX) exhibited a closed-stomata phenotype and strong tolerance to ozone. By contrast, plants that overexpress GLK1/2 exhibited an open-stomata phenotype and higher sensitivity to ozone. The plants expressing GLK1-SRDX had reduced expression of the genes for inwardly rectifying K(+) (K(+) in) channels and reduced K(+) in channel activity. Abscisic acid treatment did not affect the stomatal phenotype of 35S:GLK1/2-SRDX plants or the transcriptional activity for K(+) in channel gene, indicating that GLK1/2 act independently of abscisic acid signaling. Our results indicate that GLK1/2 positively regulate the expression of genes for K(+) in channels and promote stomatal opening. Because the chimeric GLK1-SRDX repressor driven by a guard cell-specific promoter induced a closed-stomata phenotype without affecting chloroplast development in mesophyll cells, modulating GLK1/2 activity may provide an effective tool to control stomatal movements and thus to confer resistance to air pollutants.


Assuntos
Proteínas de Arabidopsis/fisiologia , Arabidopsis/efeitos dos fármacos , Ozônio/toxicidade , Estômatos de Plantas/fisiologia , Plantas Geneticamente Modificadas/efeitos dos fármacos , Fatores de Transcrição/fisiologia , Poluentes Atmosféricos/toxicidade , Arabidopsis/genética , Arabidopsis/fisiologia , Proteínas de Arabidopsis/genética , Cloroplastos/fisiologia , Regulação da Expressão Gênica de Plantas , Herbicidas/toxicidade , Oxidantes/toxicidade , Paraquat/toxicidade , Estômatos de Plantas/efeitos dos fármacos , Transpiração Vegetal , Plantas Geneticamente Modificadas/fisiologia , Canais de Potássio/fisiologia , Dióxido de Enxofre/toxicidade , Fatores de Transcrição/genética
5.
GM Crops Food ; 7(1): 20-37, 2016 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-26838503

RESUMO

Previously, we conducted a roadside survey to reveal the occurrence of genetically modified (GM) oilseed rape along a Japanese roadside (Route 51). In this study, we performed successive and thorough fixed-route monitoring in 5 sections along another road (Route 23). Oilseed rape plants were detected on both sides of the road in each section between autumn 2009 and winter 2013, which included 3 flowering seasons. In four sections, more plants were found on the side of the road leading from the Yokkaichi port than on the opposite side. In the fifth section, the presence of clogged drains on the roadside, where juvenile plants concentrated, caused the opposite distribution: oilseed rape predominantly occurred along the inbound lanes (leading to the Yokkaichi port) in 2010 and 2012. Unlike in our previous survey, glyphosate- or glufosinate-resistant oilseed rape plants were abundant (>75% of analyzed plants over 3 years). Moreover, a few individuals bearing both herbicide resistance traits were also detected in some sections. The spillage of imported seeds may explain the occurrence of oilseed rape on the roadside. The abundance of herbicide-resistant oilseed rape plants may reflect the extent of contamination with GM oilseed rape seed within imports.


Assuntos
Brassica napus/genética , Monitoramento Ambiental/métodos , Resistência a Herbicidas , Plantas Geneticamente Modificadas/genética , Aminobutiratos/farmacologia , Brassica napus/efeitos dos fármacos , Brassica napus/crescimento & desenvolvimento , Glicina/análogos & derivados , Glicina/farmacologia , Herbicidas/farmacologia , Japão , Plantas Geneticamente Modificadas/efeitos dos fármacos , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Sementes/efeitos dos fármacos , Sementes/genética , Sementes/crescimento & desenvolvimento , Glifosato
6.
Rice (N Y) ; 7(1): 10, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24987489

RESUMO

BACKGROUND: Throughout Asia, including Japan, rice plants are cultivated in a wide range of areas from lowlands to highlands and are frequently exposed to fog, including acid fog. Some physiological studies have shown that acid fog can be a stress factor for plants. We analyzed the gene expression profiles of rice plants treated with artificially prepared simulated acid fog (SiAF) or simulated neutral fog (SiNF) for 1 or 7 days. RESULTS: Microarray analysis results suggested that both the SiAF and the SiNF treatments induced the expression of genes involved in the defense and stress responses in rice plants. Induction of such genes was detected in plants treated with SiAF for 1 day, and the number of induced genes increased in plants treated with SiAF for 7 days. The genes for defense and stress responses were also induced by SiNF for 7 days, although they were not induced by SiNF for 1 day. The gene expression profiles of the SiAF-treated and the SiNF-treated plants were compared to those of plants treated with other stress factors. The comparison revealed that both SiAF and SiNF treatments have similar effects to biotic stresses and ozone stress. The genes encoding NADPH oxidase and germin, which function in apoplasts, were also induced by SiAF, SiNF and biotic stresses. CONCLUSIONS: These findings suggest that both the SiAF and the SiNF treatments may result in oxidative stress through the apoplastic production of reactive oxygen species.

7.
Am J Bot ; 99(3): e94-6, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22362544

RESUMO

PREMISE OF THE STUDY: To capture molecular markers that are applicable to environmental risk assessment of genetically modified oilseed rape, and to streamline their development, we screened variations in nucleotide sequences of three Brassica species by DNA microarray analysis. METHODS AND RESULTS: Using the Affymetrix GeneChip Arabidopsis ATH1 Genome Array, we monitored gene expression at 22810 loci among the Brassica species and picked out 192 putative polymorphic loci. We sequenced 25 of these and successfully aligned them among all three species. All 25 loci possessed some interspecific and at times intraspecific nucleotide variation. CONCLUSIONS: DNA microarray analysis effectively detected a large number of nucleotide sequence variations among closely related Brassica species. The polymorphic regions will allow the subsequent development of functional gene markers.


Assuntos
Brassica/genética , DNA de Plantas/genética , Análise de Sequência com Séries de Oligonucleotídeos , Polimorfismo Genético , Brassica/classificação , Perfilação da Expressão Gênica , Especificidade da Espécie
8.
BMC Plant Biol ; 12: 11, 2012 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-22264357

RESUMO

BACKGROUND: Mechanosensing and its downstream responses are speculated to involve sensory complexes containing Ca2+-permeable mechanosensitive channels. On recognizing osmotic signals, plant cells initiate activation of a widespread signal transduction network that induces second messengers and triggers inducible defense responses. Characteristic early signaling events include Ca2+ influx, protein phosphorylation and generation of reactive oxygen species (ROS). Pharmacological analyses show Ca2+ influx mediated by mechanosensitive Ca2+ channels to influence induction of osmotic signals, including ROS generation. However, molecular bases and regulatory mechanisms for early osmotic signaling events remain poorly elucidated. RESULTS: We here identified and investigated OsMCA1, the sole rice homolog of putative Ca2+-permeable mechanosensitive channels in Arabidopsis (MCAs). OsMCA1 was specifically localized at the plasma membrane. A promoter-reporter assay suggested that OsMCA1 mRNA is widely expressed in seed embryos, proximal and apical regions of shoots, and mesophyll cells of leaves and roots in rice. Ca2+ uptake was enhanced in OsMCA1-overexpressing suspension-cultured cells, suggesting that OsMCA1 is involved in Ca2+ influx across the plasma membrane. Hypo-osmotic shock-induced ROS generation mediated by NADPH oxidases was also enhanced in OsMCA1-overexpressing cells. We also generated and characterized OsMCA1-RNAi transgenic plants and cultured cells; OsMCA1-suppressed plants showed retarded growth and shortened rachises, while OsMCA1-suppressed cells carrying Ca2+-sensitive photoprotein aequorin showed partially impaired changes in cytosolic free Ca2+ concentration ([Ca2+]cyt) induced by hypo-osmotic shock and trinitrophenol, an activator of mechanosensitive channels. CONCLUSIONS: We have identified a sole MCA ortholog in the rice genome and developed both overexpression and suppression lines. Analyses of cultured cells with altered levels of this putative Ca2+-permeable mechanosensitive channel indicate that OsMCA1 is involved in regulation of plasma membrane Ca2+ influx and ROS generation induced by hypo-osmotic stress in cultured rice cells. These findings shed light on our understanding of mechanical sensing pathways.


Assuntos
Cálcio/metabolismo , Membrana Celular/metabolismo , Oryza/metabolismo , Pressão Osmótica/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Oryza/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
9.
J Biol Chem ; 287(13): 9931-9939, 2012 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-22270358

RESUMO

Pathogen/microbe- or plant-derived signaling molecules (PAMPs/MAMPs/DAMPs) or elicitors induce increases in the cytosolic concentration of free Ca(2+) followed by a series of defense responses including biosynthesis of antimicrobial secondary metabolites called phytoalexins; however, the molecular links and regulatory mechanisms of the phytoalexin biosynthesis remains largely unknown. A putative voltage-gated cation channel, OsTPC1 has been shown to play a critical role in hypersensitive cell death induced by a fungal xylanase protein (TvX) in suspension-cultured rice cells. Here we show that TvX induced a prolonged increase in cytosolic Ca(2+), mainly due to a Ca(2+) influx through the plasma membrane. Membrane fractionation by two-phase partitioning and immunoblot analyses revealed that OsTPC1 is localized predominantly at the plasma membrane. In retrotransposon-insertional Ostpc1 knock-out cell lines harboring a Ca(2+)-sensitive photoprotein, aequorin, TvX-induced Ca(2+) elevation was significantly impaired, which was restored by expression of OsTPC1. TvX-induced production of major diterpenoid phytoalexins and the expression of a series of diterpene cyclase genes involved in phytoalexin biosynthesis were also impaired in the Ostpc1 cells. Whole cell patch clamp analyses of OsTPC1 heterologously expressed in HEK293T cells showed its voltage-dependent Ca(2+)-permeability. These results suggest that OsTPC1 plays a crucial role in TvX-induced Ca(2+) influx as a plasma membrane Ca(2+)-permeable channel consequently required for the regulation of phytoalexin biosynthesis in cultured rice cells.


Assuntos
Canais de Cálcio/metabolismo , Cálcio/metabolismo , Membrana Celular/metabolismo , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Sesquiterpenos/metabolismo , Equorina/genética , Equorina/metabolismo , Canais de Cálcio/genética , Membrana Celular/genética , Permeabilidade da Membrana Celular/efeitos dos fármacos , Permeabilidade da Membrana Celular/fisiologia , Citosol/metabolismo , Endo-1,4-beta-Xilanases/farmacologia , Proteínas Fúngicas/farmacologia , Células HEK293 , Humanos , Oryza/citologia , Oryza/genética , Oryza/microbiologia , Células Vegetais , Proteínas de Plantas/genética , Fitoalexinas
10.
GM Crops ; 2(3): 201-10, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22179196

RESUMO

Transgenic herbicide-resistant varieties of Brassica napus, or oilseed rape, from which canola oil is obtained, are imported into Japan, where this plant is not commercially cultivated to a large extent. This study aimed to examine the distribution of herbicide-resistant B. napus and transgene flow to escaped populations of its closely related species, B. rapa and B. juncea. Samples were collected from 12 areas near major ports through which oilseed rape imports into Japan passed--Kashima, Chiba, Yokohama, Shimizu, Nagoya, Yokkaichi, Sakai-Senboku, Kobe, Uno, Mizushima, Kita-Kyushu, and Hakata--and the presence of glyphosate- and/or glufosinate-resistant B. napus was confirmed in all areas except Yokohama, Sakai-Senboku, Uno, and Kita-Kyushu. The Yokkaichi area was the focus because several herbicide-resistant B. napus plants were detected not only on the roadside where oilseed rape spilled during transportation but also on the riverbanks, where escaped populations of B. rapa and B. juncea grew. Samples of B. napus that were tolerant to both herbicides were detected in four continuous years (2005-2008) in this area, suggesting the possibility of intraspecific transgene flow within the escaped B. napus populations. Moreover, in 2008, seeds of a possible natural hybrid between herbicide-tolerant B. napus (2n = 38) and B. rapa (2n = 20) were detected; some seedlings derived from the seeds collected at a Yokkaichi site showed glyphosate resistance and had 2n = 29 chromosomes. This observation strongly suggests the occurrence of hybridization between herbicide-resistant B. napus and escaped B. rapa and the probability of introgression of a herbicide-resistance gene into related escaped species.


Assuntos
Brassica napus/genética , Brassica rapa/genética , Fluxo Gênico , Resistência a Herbicidas/genética , Aminobutiratos/farmacologia , Brassica napus/efeitos dos fármacos , Brassica napus/crescimento & desenvolvimento , Brassica rapa/efeitos dos fármacos , Brassica rapa/crescimento & desenvolvimento , Genética Populacional , Glicina/análogos & derivados , Glicina/farmacologia , Herbicidas/farmacologia , Hibridização Genética , Japão , Plântula/efeitos dos fármacos , Plântula/genética , Plântula/crescimento & desenvolvimento , Sementes , Glifosato
11.
GM Crops ; 1(3): 143-56, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-21844669

RESUMO

Feral rapeseed in Japan consists of Brassica rapa, B. juncea and B. napus, mostly produced by escape from crops. Brassica rapa and B. juncea were introduced from abroad long ago as leaf and root vegetables and as an oil crop and breeders have developed various cultivars. Brassica napus was introduced in the late 1800s, mainly as an oil crop. Rapeseed production in Japan is low, and most demand is met by imports from Canada (94.4% of the 2009 trade volume). Recently, spontaneous B. napus, including genetically modified (GM) herbicide-resistant individuals, has been detected along Japanese roads, probably originating from seeds lost during transportation of imports. As GM oilseed production increases abroad, the probability of escape of GM oilseed rape in Japan will increase, raising environmental biosafety concerns related to the impact of feral rapeseed on heirloom brassicaceous crops. In this paper, we review the history of rapeseed introduction in Japan and future concerns.


Assuntos
Brassica napus/genética , Brassica rapa/genética , Brassica/genética , Plantas Geneticamente Modificadas/genética , Sementes/genética , Brassica/crescimento & desenvolvimento , Brassica/metabolismo , Brassica napus/crescimento & desenvolvimento , Brassica napus/metabolismo , Brassica rapa/crescimento & desenvolvimento , Brassica rapa/metabolismo , Saúde Ambiental , Ácidos Graxos Monoinsaturados , Geografia , Humanos , Japão , Óleos de Plantas/metabolismo , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/metabolismo , Óleo de Brassica napus , Sementes/metabolismo
12.
Environ Biosafety Res ; 8(1): 33-44, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19419652

RESUMO

Monitoring for escape of genetically modified (GM) oilseed rape (Brassica napus) during transport can be performed by means of roadside evaluations in areas where cultivation of this GM crop is not conducted, such as in Japan. We performed a survey of oilseed rape plants growing along a 20-km section of Japan's Route 51, one of the main land transportation routes in central Japan for imports of GM oilseed rape from the Port of Kashima into Keiyo District. Oilseed rape plants were found each year, but the number of plants varied substantially during the three years of our study: 2162 plants in 2005, 4066 in 2006, and only 278 in 2007. The low number in 2007 was probably caused by roadwork. Herbicide-resistant individuals were detected in the three consecutive years (26, 8, and 5 individuals with glyphosate resistance), but glufosinate-resistant plants (9 individuals) were detected only in 2005. The roadside plants occurred mainly along the inbound lane from Kashima to Narita. These plants are likely to have their origin in seeds spilled during transportation of cargo from the port, since there are no potential natural seed source plants for B. napus near Route 51. This is the first detailed report on the transition and distribution of herbicide-resistant oilseed rape plants following loss and spillage along Japanese roads.


Assuntos
Brassica napus/genética , Produtos Agrícolas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Brassica napus/efeitos dos fármacos , Brassica napus/crescimento & desenvolvimento , Produtos Agrícolas/efeitos dos fármacos , Produtos Agrícolas/crescimento & desenvolvimento , Cruzamentos Genéticos , Monitoramento Ambiental , Fluxo Gênico , Resistência a Herbicidas/genética , Japão , Plantas Geneticamente Modificadas/efeitos dos fármacos , Densidade Demográfica , Dinâmica Populacional , Sementes/genética , Meios de Transporte
13.
Physiol Plant ; 136(3): 284-98, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19453511

RESUMO

Ozone produces reactive oxygen species and induces the synthesis of phytohormones, including ethylene and salicylic acid. These phytohormones act as signal molecules that enhance cell death in response to ozone exposure. However, some studies have shown that ethylene and salicylic acid can instead decrease the magnitude of ozone-induced cell death. Therefore, we studied the defensive roles of ethylene and salicylic acid against ozone. Unlike the wild-type, Col-0, Arabidopsis mutants deficient in ethylene signaling (ein2) or salicylic acid biosynthesis (sid2) generated high levels of superoxide and exhibited visible leaf injury, indicating that ethylene and salicylic acid can reduce ozone damage. Macroarray analysis suggested that the ethylene and salicylic acid defects influenced glutathione (GSH) metabolism. Increases in the reduced form of GSH occurred in Col-0 6 h after ozone exposure, but little GSH was detected in ein2 and sid2 mutants, suggesting that GSH levels were affected by ethylene or salicylic acid signaling. We performed gene expression analysis by real-time polymerase chain reaction using genes involved in GSH metabolism. Induction of gamma-glutamylcysteine synthetase (GSH1), glutathione synthetase (GSH2), and glutathione reductase 1 (GR1) expression occurred normally in Col-0, but at much lower levels in ein2 and sid2. Enzymatic activities of GSH1 and GSH2 in ein2 and sid2 were significantly lower than in Col-0. Moreover, ozone-induced leaf damage observed in ein2 and sid2 was mitigated by artificial elevation of GSH content. Our results suggest that ethylene and salicylic acid protect against ozone-induced leaf injury by increasing de novo biosynthesis of GSH.


Assuntos
Arabidopsis/metabolismo , Etilenos/metabolismo , Glutationa/biossíntese , Ozônio/farmacologia , Reguladores de Crescimento de Plantas/metabolismo , Ácido Salicílico/metabolismo , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Transferases Intramoleculares/genética , Transferases Intramoleculares/metabolismo , Mutação , Análise de Sequência com Séries de Oligonucleotídeos , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo
14.
Planta ; 229(1): 25-36, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18825406

RESUMO

Cyclobutane pyrimidine dimers (CPDs) constitute a majority of DNA lesions caused by ultraviolet-B (UVB). CPD photolyase, which rapidly repairs CPDs, is essential for plant survival under sunlight containing UVB. Our earlier results that the transcription of the cucumber CPD photolyase gene (CsPHR) was activated by light have prompted us to propose that this light-driven transcriptional activation would allow plants to meet the need of the photolyase activity upon challenges of UVB from sunlight. However, molecular mechanisms underlying the light-dependent transcriptional activation of CsPHR were unknown. In order to understand spectroscopic aspects of the plant response, we investigated the wavelength-dependence (action spectra) of the light-dependent transcriptional activation of CsPHR. In both cucumber seedlings and transgenic Arabidopsis seedlings expressing reporter genes under the control of the CsPHR promoter, the action spectra exhibited the most predominant peak in the long-wavelength UVB waveband (around 310 nm). In addition, a 95-bp cis-acting region in the CsPHR promoter was identified to be essential for the UVB-driven transcriptional activation of CsPHR. Thus, we concluded that the photoperception of long-wavelength UVB by UVB photoreceptor(s) led to the induction of the CsPHR transcription via a conserved cis-acting element.


Assuntos
Cucumis sativus/enzimologia , Desoxirribodipirimidina Fotoliase/genética , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Fotorreceptores de Plantas/metabolismo , Fotorreceptores de Plantas/efeitos da radiação , Ativação Transcricional/efeitos da radiação , Raios Ultravioleta , Cucumis sativus/genética , Cucumis sativus/efeitos da radiação , Genes Reporter , Folhas de Planta/enzimologia , Folhas de Planta/genética , Folhas de Planta/efeitos da radiação , Regiões Promotoras Genéticas/genética , Transcrição Gênica/efeitos da radiação
15.
J Proteome Res ; 7(7): 2980-98, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18517257

RESUMO

Ozone (O(3)), a serious air pollutant, is known to significantly reduce photosynthesis, growth, and yield and to cause foliar injury and senescence. Here, integrated transcriptomics, proteomics, and metabolomics approaches were applied to investigate the molecular responses of O(3) in the leaves of 2-week-old rice (cv. Nipponbare) seedlings exposed to 0.2 ppm O(3) for a period of 24 h. On the basis of the morphological alteration of O(3)-exposed rice leaves, transcript profiling of rice genes was performed in leaves exposed for 1, 12, and 24 h using rice DNA microarray chip. A total of 1535 nonredundant genes showed altered expression of more than 5-fold over the control, representing 8 main functional categories. Genes involved in information storage and processing (10%) and cellular processing and signaling categories (24%) were highly represented within 1 h of O(3) treatment; transcriptional factor and signal transduction, respectively, were the main subcategories. Genes categorized into information storage and processing (17, 23%), cellular processing and signaling (20, 16%) and metabolism (18, 19%) were mainly regulated at 12 and 24 h; their main subcategories were ribosomal protein, post-translational modification, and signal transduction and secondary metabolites biosynthesis, respectively. Two-dimensional gel electrophoresis-based proteomics analyses in combination with tandem mass spectrometer identified 23 differentially expressed protein spots (21 nonredundant proteins) in leaves exposed to O(3) for 24 h compared to respective control. Identified proteins were found to be involved in cellular processing and signaling (32%), photosynthesis (19%), and defense (14%). Capillary electrophoresis-mass spectrometry-based metabolomic profiling revealed accumulation of amino acids, gamma-aminobutyric acid, and glutathione in O(3) exposed leaves until 24 h over control. This systematic survey showed that O(3) triggers a chain reaction of altered gene, protein and metabolite expressions involved in multiple cellular processes in rice.


Assuntos
Poluentes Atmosféricos/farmacologia , Oryza/efeitos dos fármacos , Ozônio/farmacologia , Folhas de Planta/efeitos dos fármacos , Proteínas de Plantas/metabolismo , Eletroforese Capilar , Eletroforese em Gel Bidimensional , Perfilação da Expressão Gênica , Espectrometria de Massas , Análise de Sequência com Séries de Oligonucleotídeos , Oryza/metabolismo , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Proteômica , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Plântula/efeitos dos fármacos , Plântula/metabolismo
16.
Plant Cell Physiol ; 49(1): 2-10, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18084014

RESUMO

To understand better the plant response to ozone, we isolated and characterized an ozone-sensitive (ozs1) mutant strain from a set of T-DNA-tagged Arabidopsis thaliana ecotype Columbia. The mutant plants show enhanced sensitivity to ozone, desiccation and sulfur dioxide, but have normal sensitivity to hydrogen peroxide, low temperature and high light levels. The T-DNA was inserted at a single locus which is linked to ozone sensitivity. Identification of the genomic sequences flanking the T-DNA insertion revealed disruption of a gene encoding a transporter-like protein of the tellurite resistance/C(4)-dicarboxylate transporter family. Plants with either of two different T-DNA insertions in this gene were also sensitive to ozone, and these plants failed to complement ozs1. Transpiration levels, stomatal conductance levels and the size of stomatal apertures were greater in ozs1 mutant plants than in the wild type. The stomatal apertures of ozs1 mutant plants responded to light fluctuations but were always larger than those of the wild-type plants under the same conditions. The stomata of the mutant and wild-type plants responded similarly to stimuli such as light, abscisic acid, high concentrations of carbon dioxide and ozone. These results suggest that OZS1 helps to close stomata, being not involved in the responses to these signals.


Assuntos
Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Ozônio/toxicidade , Estômatos de Plantas/efeitos dos fármacos , Estômatos de Plantas/fisiologia , Arabidopsis/efeitos dos fármacos , Relação Dose-Resposta a Droga , Regulação da Expressão Gênica de Plantas , Peróxido de Hidrogênio/farmacologia , Mutação , Filogenia
17.
Chemosphere ; 69(6): 934-41, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17629547

RESUMO

The endocrine disruptor bisphenol A (BPA, 4,4'-isopropylidenediphenol) is used to manufacture polycarbonate plastic and epoxy resin linings of food and beverage cans, and the residues from these products are then sometimes discharged into rivers and lakes in waste leachates. However, the fate of BPA in the environment has not yet been thoroughly elucidated. Considering the effect of BPA on aquatic organisms, it is important that we estimate the concentration of BPA and its metabolites in the aquatic environment, but there are few data on the metabolites of BPA. Here, we focused on freshwater microalgae as organisms that contribute to the biodegradation or biotransformation of BPA in aquatic environments. When we added BPA to cultures of eight species of freshwater microalgae, a reduction in the concentration of BPA in the culture medium was observed in all cultures. BPA was metabolized to BPA glycosides by Pseudokirchneriella subcapitata, Scenedesmus acutus, Scenedesmus quadricauda, and Coelastrum reticulatum, and these metabolites were then released into the culture medium. The metabolite from P. subcapitata, S. acutus, and C. reticulatum was identified by FAB-MS and (1)H-NMR as bisphenol A-mono-O-beta-d-glucopyranoside (BPAGlc), and another metabolite, from S. quadricauda, was identified as bisphenol A-mono-O-beta-d-galactopyranoside (BPAGal). These results demonstrate that freshwater microalgae that inhabit universal environments can metabolize BPA to its glycosides. Because BPA glycosides accumulate in plants and algae, and may be digested to BPA by beta-glycosidase in animal intestines, more attention should be given to levels of BPA glycosides in the environment to estimate the ecological impact of discharged BPA.


Assuntos
Disruptores Endócrinos/toxicidade , Eucariotos , Água Doce , Fenóis/toxicidade , Poluentes Químicos da Água/toxicidade , Compostos Benzidrílicos , Biotransformação , Disruptores Endócrinos/farmacocinética , Eucariotos/efeitos dos fármacos , Eucariotos/crescimento & desenvolvimento , Eucariotos/metabolismo , Cadeia Alimentar , Água Doce/análise , Água Doce/microbiologia , Glicosilação , Fenóis/farmacocinética , Poluentes Químicos da Água/farmacocinética
18.
Planta ; 226(5): 1277-85, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17588170

RESUMO

Ozone (O3), a major photochemical oxidant, causes leaf injury in plants. Plants synthesize salicylic acid (SA), which is reported to greatly affect O3 sensitivity. However, the mechanism of SA biosynthesis under O3 exposure remains unclear. Plants synthesize SA either by a pathway involving phenylalanine as a substrate or another involving isochorismate. To clarify how SA is produced in O3-exposed Arabidopsis, we examined the activities of phenylalanine ammonia lyase (PAL) and isochorismate synthase (ICS), which are components of the phenylalanine and isochorismate pathways, respectively. Exposure of Arabidopsis to O3 enhanced the accumulation of SA and the increase of ICS activity but did not affect PAL activity. In sid2 mutants, which have a defect in ICS1, the level of SA and the activity of ICS did not increase in response to O3 exposure. These results suggest that SA is mainly synthesized from isochorismate in Arabidopsis. Furthermore, the level of ICS1 expression and the activity of ICS during O3 exposure elevated in plants deficient for SA signaling (npr1 and eds5 mutants and NahG transgenics). Treatment of plants with SA also suppressed the enhancement of ICS1 expression by O3. These results suggest that SA synthesis is negatively regulated by SA signaling.


Assuntos
Arabidopsis/metabolismo , Ácido Corísmico/metabolismo , Cicloexenos/metabolismo , Ozônio/farmacologia , Ácido Salicílico/metabolismo , Transdução de Sinais/efeitos dos fármacos , Arabidopsis/enzimologia , Sequência de Bases , Northern Blotting , Primers do DNA , Transferases Intramoleculares/metabolismo , Fenilalanina Amônia-Liase/metabolismo
19.
Biosci Biotechnol Biochem ; 70(8): 1827-31, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16926493

RESUMO

rcd1 is a mutant of Arabidopsis thaliana that is more resistant to methyl viologen, but more sensitive to ozone than the wild type. rcd1-2 is caused by a single nucleotide substitution that results in a premature stop codon at Trp-332. The rcd1-2 mRNA level does not change significantly with the mutation. Since overexpression of rcd1-1 cDNA has been shown to bring about an rcd1-like phenotype, we created and examined the overexpression lines of RCD1 by the use of the cauliflower mosaic virus 35S promoter. The transgenic lines exhibited a weak rcd1-like phenotype, although no resistance to methyl viologen was observed. Further, they fully complemented the aberrant rcd1-2 phenotype. Subcellular localization of RCD1 was examined by transiently expressing green fluorescent protein (GFP) fused with RCD1 in onion epidermal cells. GFP signals are observed as aggregated foci in the inner nuclear matrix-like region.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Perfilação da Expressão Gênica , Proteínas Nucleares/genética , Estresse Oxidativo/fisiologia , Arabidopsis/efeitos dos fármacos , Proteínas de Arabidopsis/efeitos dos fármacos , Proteínas de Fluorescência Verde/genética , Mutação , Proteínas Nucleares/efeitos dos fármacos , Ozônio/farmacologia , Fenótipo , RNA Mensageiro/efeitos dos fármacos , RNA Mensageiro/genética , Proteínas Recombinantes de Fusão/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Sementes/efeitos dos fármacos , Sementes/genética
20.
Z Naturforsch C J Biosci ; 61(5-6): 377-86, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16869497

RESUMO

Monitoring of transgenic plants in the field is important, but risk assessment has entailed laborious use of invisible marker genes. Here, we assessed three easily visible marker transgenes--green fluorescent protein (GFP), R, and Nicotiana tabacum homeobox (NTH) 15 genes--for their potential use as marker genes for monitoring genetically modified plants. Transgenic Arabidopsis thaliana plants for each of these genes were visibly distinguished from wild-type plants. We determined the germination rate, 3-week fresh weight, time to first flowering, and seed weight of the transgenic plants to evaluate whether the expression of these marker genes affected the growth of the host. Introduction of GFP gene had no effect on the evaluated parameters, and we then used the GFP gene as a marker to assess the outcrossing frequency between transgenic and two Arabidopsis species. Our results showed that the hybridization frequency between transgenic plants and Arabidopsis thaliana was 0.24%, and between transformants and Arabidopsis lyrata it was 2.6% under experimental condition. Out-crossing frequency was decreased by extending the distance between two kinds of plants. Thus, the GFP gene is a useful marker for assessing the whereabouts of transgenes/transformants in the field. We also demonstrated that the GFP gene is possibly applicable as a selection marker in the process of generation of transgenic plants.


Assuntos
Biomarcadores/análise , Poluição Ambiental , Plantas Geneticamente Modificadas/química , Plantas Geneticamente Modificadas/fisiologia , Medição de Risco , Arabidopsis/genética , Marcadores Genéticos , Germinação/fisiologia , Proteínas de Fluorescência Verde/análise , Proteínas de Fluorescência Verde/genética , Fenótipo , Sementes/fisiologia , Seleção Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...