Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Nutr ; 10: 1119274, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36960209

RESUMO

Introduction: Despite strong epidemiological evidence that dietary factors modulate cancer risk, cancer control through dietary intervention has been a largely intractable goal for over sixty years. The effect of tumour genotype on synergy is largely unexplored. Methods: The effect of seven dietary phytochemicals, quercetin (0-100 µM), curcumin (0-80 µM), genistein, indole-3-carbinol (I3C), equol, resveratrol and epigallocatechin gallate (EGCG) (each 0-200 µM), alone and in all paired combinations om cell viability of the androgen-responsive, pTEN-null (LNCaP), androgen-independent, pTEN-null (PC-3) or androgen-independent, pTEN-positive (DU145) prostate cancer (PCa) cell lines was determined using a high throughput alamarBlue® assay. Synergy, additivity and antagonism were modelled using Bliss additivism and highest single agent equations. Patterns of maximum synergy were identified by polygonogram analysis. Network pharmacology approaches were used to identify interactions with known PCa protein targets. Results: Synergy was observed with all combinations. In LNCaP and PC-3 cells, I3C mediated maximum synergy with five phytochemicals, while genistein was maximally synergistic with EGCG. In contrast, DU145 cells showed resveratrol-mediated maximum synergy with equol, EGCG and genistein, with I3C mediating maximum synergy with only quercetin and curcumin. Knockdown of pTEN expression in DU145 cells abrogated the synergistic effect of resveratrol without affecting the synergy profile of I3C and quercetin. Discussion: Our study identifies patterns of synergy that are dependent on tumour cell genotype and are independent of androgen signaling but are dependent on pTEN. Despite evident cell-type specificity in both maximally-synergistic combinations and the pathways that phytochemicals modulate, these combinations interact with similar prostate cancer protein targets. Here, we identify an approach that, when coupled with advanced data analysis methods, may suggest optimal dietary phytochemical combinations for individual consumption based on tumour molecular profile.Graphical abstract.

2.
Cancers (Basel) ; 14(22)2022 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-36428658

RESUMO

Chondroitin sulfate (CS) proteoglycan 4 (CSPG4) is a cell surface proteoglycan that is currently under investigation as a marker of cancer malignancy, and as a potential target of anticancer drug treatment. CSPG4 acts as a driver of tumourigenesis by regulating turnover of the extracellular matrix (ECM) to promote tumour cell invasion, migration as well as inflammation and angiogenesis. While CSPG4 has been widely studied in certain malignancies, such as melanoma, evidence is emerging from global gene expression studies, which suggests a role for CSPG4 in squamous cell carcinoma (SCC). While relatively treatable, lack of widely agreed upon diagnostic markers for SCCs is problematic, especially for clinicians managing certain patients, including those who are aged or infirm, as well as those with underlying conditions such as epidermolysis bullosa (EB), for which a delayed diagnosis is likely lethal. In this review, we have discussed the structure of CSPG4, and quantitatively analysed CSPG4 expression in the tissues and pathologies where it has been identified to determine the usefulness of CSPG4 expression as a diagnostic marker and therapeutic target in management of malignant SCC.

3.
Molecules ; 26(23)2021 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-34885848

RESUMO

Phospholipase A2 (PLA2) enzymes were first recognized as an enzyme activity class in 1961. The secreted (sPLA2) enzymes were the first of the five major classes of human PLA2s to be identified and now number nine catalytically-active structurally homologous proteins. The best-studied of these, group IIA sPLA2, has a clear role in the physiological response to infection and minor injury and acts as an amplifier of pathological inflammation. The enzyme has been a target for anti-inflammatory drug development in multiple disorders where chronic inflammation is a driver of pathology since its cloning in 1989. Despite intensive effort, no clinically approved medicines targeting the enzyme activity have yet been developed. This review catalogues the major discoveries in the human group IIA sPLA2 field, focusing on features of enzyme function that may explain this lack of success and discusses future research that may assist in realizing the potential benefit of targeting this enzyme. Functionally-selective inhibitors together with isoform-selective inhibitors are necessary to limit the apparent toxicity of previous drugs. There is also a need to define the relevance of the catalytic function of hGIIA to human inflammatory pathology relative to its recently-discovered catalysis-independent function.


Assuntos
Fosfolipases A2 do Grupo II/metabolismo , Desenvolvimento de Medicamentos , Fosfolipases A2 do Grupo II/antagonistas & inibidores , Fosfolipases A2 do Grupo II/farmacologia , Humanos , Neoplasias/diagnóstico , Neoplasias/enzimologia , Prognóstico
4.
J Cancer Res Clin Oncol ; 147(4): 1007-1017, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33547950

RESUMO

The TERT promoter (pTERT) mutations, C228T and C250T, play a significant role in malignant transformation by telomerase activation, oncogenesis and immortalisation of cells. C228T and C250T are emerging as important biomarkers in many cancers including glioblastoma multiforme (GBM), where the prevalence of these mutations is as high as 80%. Additionally, the rs2853669 single nucleotide polymorphism (SNP) may cooperate with these pTERT mutations in modulating progression and overall survival in GBM. Using liquid biopsies, pTERT mutations, C228T and C250T, and other clinically relevant biomarkers can be easily detected with high precision and sensitivity, facilitating longitudinal analysis throughout therapy and aid in cancer patient management.In this review, we explore the potential for pTERT mutation analysis, via liquid biopsy, for its potential use in personalised cancer therapy. We evaluate the relationship between pTERT mutations and other biomarkers as well as their potential clinical utility in early detection, prognostication, monitoring of cancer progress, with the main focus being on brain cancer.


Assuntos
Biomarcadores Tumorais/genética , Neoplasias Encefálicas/patologia , Glioma/patologia , Mutação , Telomerase/genética , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/terapia , Glioma/genética , Glioma/terapia , Humanos , Prognóstico
5.
Cell Commun Signal ; 18(1): 61, 2020 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-32276641

RESUMO

BACKGROUND: Cutaneous squamous cell carcinomas (cSCC) are the primary cause of premature deaths in patients suffering from the rare skin-fragility disorder recessive dystrophic epidermolysis bullosa (RDEB), which is in marked contrast to the rarely metastasizing nature of these carcinomas in the general population. This remarkable difference is attributed to the frequent development of chronic wounds caused by impaired skin integrity. However, the specific molecular and cellular changes to malignancy, and whether there are common players in different types of aggressive cSCCs, remain relatively undefined. METHODS: MiRNA expression profiling was performed across various cell types isolated from skin and cSCCs. Microarray results were confirmed by qPCR and by an optimized in situ hybridization protocol. Functional impact of overexpression or knock-out of a dysregulated miRNA was assessed in migration and 3D-spheroid assays. Sample-matched transcriptome data was generated to support the identification of disease relevant miRNA targets. RESULTS: Several miRNAs were identified as dysregulated in cSCCs compared to control skin. These included the metastasis-linked miR-10b, which was significantly upregulated in primary cell cultures and in archival biopsies. At the functional level, overexpression of miR-10b conferred the stem cell-characteristic of 3D-spheroid formation capacity to keratinocytes. Analysis of miR-10b downstream effects identified a novel putative target of miR-10b, the actin- and tubulin cytoskeleton-associated protein DIAPH2. CONCLUSION: The discovery that miR-10b mediates an aspect of cancer stemness - that of enhanced tumor cell adhesion, known to facilitate metastatic colonization - provides an important avenue for future development of novel therapies targeting this metastasis-linked miRNA.


Assuntos
Carcinoma de Células Escamosas , Epidermólise Bolhosa Distrófica/patologia , MicroRNAs/fisiologia , Células-Tronco Neoplásicas , Neoplasias Cutâneas , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patologia , Células Cultivadas , Regulação Neoplásica da Expressão Gênica , Humanos , Queratinócitos/metabolismo , Queratinócitos/patologia , Invasividade Neoplásica , Células-Tronco Neoplásicas/citologia , Células-Tronco Neoplásicas/metabolismo , Cultura Primária de Células , Neoplasias Cutâneas/metabolismo , Neoplasias Cutâneas/patologia
6.
Urol Oncol ; 30(4): 502-8, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-20864363

RESUMO

OBJECTIVE: To investigate the relationship between the expression of the cancer metastasis suppressor gene KAI1 and MMP-2 and MMP-9 in human bladder cancer cell lines that express variable levels of KAI1. MATERIALS AND METHODS: Five bladder cancer cell lines (BL-28/0, BL-13/0, BL-17/0/×1, B10, and D2) were grown in standard culture conditions. Gelatinase activities in serum-free conditioned medium were assessed using gelatin zymography. Whole cell lysates were prepared and Western blotting used to detect the protein expression of MMP-9, MMP-2, TIMP-1, TIMP-2, and KAI1. Semiquantitative RT-PCR was performed to analyze the mRNA expression level of MMP-2, MMP-9, TIMP-1, TIMP-2, and KAI1. RESULTS: Western blotting analysis confirmed that KAI1 was expressed in BL-28/0 and Bl-13/0 but not in D2, B10 and BL-17/0/×1 cell lines. This was consistent with in vitro invasion assays reported previously which showed that cell lines lacking KAI1 expression were 2× to 10× more invasive than cell lines that expressed KAI1. MMP-2 protein was detected in BL-28/0, BL-13/0. and BL-17/0/×1 only. Very low levels of MMP-9 were present in BL-28/0, BL-13/0, B10, and BL-17/0/×1 but not D2, whilst very low levels of TIMP-1 were present in all cell lines. No TIMP-2 was detected. Gelatin zymography showed detectable MMP-2 expression in conditioned medium from BL-28/0 and BL-13/0. Very weak MMP-9 was detected in BL-28/0 conditioned medium only. mRNA expression of MMP-2 was only detectable in BL-28/0 and BL-13/0 cell lines. MMP-9 mRNA levels were extremely low in all lines and not detectable in D2 cells. TIMP-1 and TIMP-2 mRNA were detected in all lines. CONCLUSION: We found that KAI1 expression in bladder cancer cell lines is related to a poor invasive potential and expression of latent MMP-2 but not MMP-9. These results are unexpected given other studies showing high levels of MMP-2 and MMP-9 protein expression in patients with invasive bladder cancer. This may reflect differences in the regulation and secretion of MMP-2 and MMP-9 in vitro compared with the in vivo situation, where tumor cells interact with the surrounding environment.


Assuntos
Regulação Neoplásica da Expressão Gênica , Proteína Kangai-1/genética , Metaloproteinase 2 da Matriz/genética , Metaloproteinase 9 da Matriz/genética , Western Blotting , Linhagem Celular Tumoral , Movimento Celular/genética , Humanos , Proteína Kangai-1/metabolismo , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Invasividade Neoplásica , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Inibidor Tecidual de Metaloproteinase-1/genética , Inibidor Tecidual de Metaloproteinase-1/metabolismo , Inibidor Tecidual de Metaloproteinase-2/genética , Inibidor Tecidual de Metaloproteinase-2/metabolismo , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/metabolismo , Neoplasias da Bexiga Urinária/patologia
7.
Biochimie ; 92(6): 601-10, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20362028

RESUMO

Phospholipase A(2) (PLA(2)) enzymes (EC3.1.4.4) regulate the release of biologically active fatty acids and lysophospholipids from membrane phospholipid pools. These lipids are also substrates for intracellular biochemical pathways that generate potent autocrine and paracrine lipid mediators such as the eicosanoids and platelet activating factor. These factors, in turn, regulate cell proliferation, survival, differentiation, motility, tissue vascularisation, and immune surveillance in virtually all tissues, functions that are subverted by cancer cells for tumour growth and metastasis. Thus the relevance of PLA(2)-dependent pathways to the genesis and progression of cancer has been of interest since their discovery and with recent technological advances, their role in tumourigenesis has become more tractable experimentally. Limited human genetic studies have not yet identified PLA(2) enzymes as classical mutated oncogenes or tumour suppressor genes. However, there is strong evidence that of the 22 identified human PLA(2) enzymes, ten of which have been studied in cancer to date, most are aberrantly expressed in a proportion of tumours derived from diverse organs. Correlative and functional studies implicate the expression of some secreted enzymes (sPLA(2)s), particularly the best studied enzyme Group IIA sPLA(2) in either tumour promotion or inhibition, depending on the organ involved and the biochemical microenvironment of tumours. As in immune-mediated inflammatory pathologies, genetic deletion studies in mice, supported by limited studies with human cells and tissues, have identified an important role for Group IVA PLA(2) in regulating certain cancers. Pharmacological intervention studies in prostate cancer suggest that hGIIA-dependent tumour growth is dependent on indirect regulation of Group IVA PLA(2). Group VI calcium-independent PLA(2) enzymes have also been recently implicated in tumourigenesis with in vitro studies suggesting multiple possible roles for these enzymes. Though apparently complex, further characterization of the regulatory relationships amongst PLA(2) enzymes, lipid mediator biosynthetic enzymes and the lipid mediators they produce during tumour progression is required to define the biochemical context in which the enzymes modulate cancer growth and development.


Assuntos
Neoplasias/enzimologia , Fosfolipases A2/metabolismo , Animais , Proliferação de Células , Humanos , Inflamação/imunologia , Inflamação/metabolismo , Camundongos
8.
Cancer Res ; 64(19): 6934-40, 2004 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-15466184

RESUMO

Mortality from prostate cancer is associated with progression of tumors to androgen-independent growth and metastasis. Eicosanoid products of both the cyclooxygenase (COX) and lipoxygenase (LOX) pathways are important mediators of the proliferation of prostate cancer cells in culture and regulate tumor vascularization and metastasis in animal models. Pharmacologic agents that block either COX or LOX products effectively reduce the size of prostate cancer xenografts. Phospholipase A(2) (PLA(2)) enzymes regulate the provision of arachidonic acid to both COX- and LOX-derived eicosanoids, and a secreted form of the enzyme (sPLA(2)-IIA) is elevated in prostate cancer tissues. Here, we show by immunohistochemistry, in patients receiving androgen ablation therapy, that sPLA(2)-IIA remains elevated in remaining cancer cells relative to benign glands after treatment. Furthermore, sPLA(2)-IIA expression seen in benign glands is substantially decreased after androgen depletion, whereas cytosolic PLA(2)-alpha (cPLA(2)-alpha) levels are unchanged. sPLA(2)-IIA mRNA expression is detectable and inducible by androgen (0.01-10 nmol/L) in the androgen-sensitive cell line LNCaP, and exogenous addition of sPLA(2)-IIA (1-100 nmol/L), but not an inactive sPLA(2)-IIA mutant (H(48)Q), results in a dose-dependent increase in cell numbers or the fraction of cells in G(2)-M phase, which is inhibited by sPLA(2)-IIA-selective inhibitors. The effect of exogenous sPLA(2)-IIA can also be blocked by inhibition of cPLA(2)-alpha, suggesting a role for cPLA(2)-alpha in mediating sPLA(2)-IIAlpha action. sPLA(2)-IIA inhibitors suppressed basal proliferation in LNCaP cells and in the androgen-independent, sPLA(2)-positive cell line PC3 but not in the sPLA(2)-IIA-negative androgen-independent cell line DU145. Established PC3 xenograft tumors grew more slowly in mice treated with sPLA(2)-IIA inhibitors than those treated with saline only. The PLA(2) enzymes, and sPLA(2)-IIA in particular, thus represent important targets for the treatment of sPLA(2)-IIA-positive androgen-independent prostate cancer.


Assuntos
Fosfolipases A/metabolismo , Neoplasias da Próstata/enzimologia , Androgênios/deficiência , Animais , Células CHO , Linhagem Celular Tumoral , Cricetinae , Citosol/enzimologia , Inibidores Enzimáticos/farmacologia , Fosfolipases A2 do Grupo II , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Peptídeos Cíclicos/farmacologia , Fosfolipases A/antagonistas & inibidores , Fosfolipases A/biossíntese , Fosfolipases A/genética , Fosfolipases A2 , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , RNA Mensageiro/biossíntese , RNA Mensageiro/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...