Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microb Pathog ; 170: 105702, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35940442

RESUMO

Peste-des-Petits-Ruminants (PPR) or goat plague is an important viral disease of sheep and goats caused by the small ruminant morbilli virus or PPR virus (PPRV). Long non coding RNAs (lncRNA) and circular RNAs (circRNA) play a pivotal role in several biological processes including regulation of virus-host interactions. The present study explored the expression of lncRNA, circRNA and their functions in PPRV infected B-lymphocyte (B95a) cells. The results revealed a total of 4531 lncRNA and 2348 circRNA expression in both mock and PPRV infected samples. Analysis of differentially expressed (DE) RNA identified 123 DE-lncRNA and 39 DE-circRNA as significantly dysregulated. Functional analysis of cis-target genes of DE-lncRNA indicated activation of TCF dependent WNT signaling and PKN1 stimulated transcription process. Interactions (sponging) of microRNA (miRNA) revealed 344 DE-lncRNA-miRNA and 93 DE-circRNA-miRNA pairs. The competing endogenous RNA (ceRNA) network of lncRNA/circRNA-miRNA-mRNA in PPRV infected B95a cells was represented by 69 ceRNA pairs. We validated the DE-circRNA by targeted amplification and sequencing of back spliced junctions (BSJs). The present study revealed a profile of lncRNA, circRNA and their potential ceRNA network in PPRV infection. The results provide insight for better understanding of PPRV-host interactions.


Assuntos
Doenças das Cabras , MicroRNAs , Peste dos Pequenos Ruminantes , Vírus da Peste dos Pequenos Ruminantes , RNA Longo não Codificante , Doenças dos Ovinos , Animais , Linfócitos B , Callithrix/genética , Cabras , MicroRNAs/genética , Peste dos Pequenos Ruminantes/genética , Vírus da Peste dos Pequenos Ruminantes/genética , RNA Circular/genética , RNA Longo não Codificante/genética , Ovinos
2.
Int J Biometeorol ; 66(9): 1797-1809, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35796826

RESUMO

Environmental temperature is one of the major factors to affect health and productivity of dairy cattle. Gene expression networks within the cells and tissues coordinate stress response, metabolism, and milk production in dairy cattle. Epigenetic DNA methylations were found to mediate the effect of environment by regulating gene expression patterns. In the present study, we compared three Indian native zebu cattle, Bos indicus (Sahiwal, Tharparkar, and Hariana) and one crossbred Bos indicus × Bos taurus (Vrindavani) for stress gene expression and differences in the DNA methylation patterns. The results indicated acute heat shock to cultured PBMC affected their proliferation, stress gene expression, and DNA methylation. Interestingly, expressions of HSP70, HSP90, and STIP1 were found more pronounced in zebu cattle than the crossbred cattle. However, no significant changes were observed in global DNA methylation due to acute heat shock, even though variations were observed in the expression patterns of DNA methyltransferases (DNMT1, DNMT3a) and demethylases (TET1, TET2, and TET3) genes. The treatment 5-AzaC (5-azacitidine) that inhibit DNA methylation in proliferating PBMC caused significant increase in heat shock-induced HSP70 and STIP1 expression indicating that hypomethylation facilitated stress gene expression. Further targeted analysis DNA methylation in the promoter regions revealed no significant differences for HSP70, HSP90, and STIP1. However, there was a significant hypomethylation for BDNF in both zebu and crossbred cattle. Similarly, NR3C1 promoter region showed hypomethylation alone in crossbred cattle. Overall, the results indicated that tropically adapted zebu cattle had comparatively higher expression of stress genes than the crossbred cattle. Furthermore, DNA methylation may play a role in regulating expression of certain genes involved in stress response pathways.


Assuntos
Metilação de DNA , Leucócitos Mononucleares , Animais , Bovinos , Expressão Gênica , Proteínas de Choque Térmico HSP70 , Proteínas de Choque Térmico HSP90 , Resposta ao Choque Térmico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...